K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

7 tháng 12 2021

SSH:(20152-12):10+1=2015

(12-22)+(32-42)+(52-62)+...+(20132-20142)+20152

-10+(-10)+(-10)+...+(-10)+20152

-10x(2015-1):2+20152=12

=> C=12

7 tháng 5 2021

undefined

Giải:

A=1/22+1/32+1/42+...+1/92

Ta có:

1/22<1/1.2

1/32<1/2.3

1/42<1/3.4

...

1/92<1/8.9

⇒A<1/1.2+1/2.3+1/3.4+...+1/8.9

A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9

A<1/1-1/9

A<8/9

 

Ta có:

1/22>1/2.3

1/32>1/3.4

1/42>1/4.5

...

1/92>1/9.10

⇒A>1/2.3+1/3.4+1/4.5+...+1/9.10

A>1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10

A>1/2-1/10

A>2/5

Vậy 2/5<A<8/9 (đpcm)

Chúc bạn học tốt!

24 tháng 5 2016

a, Số lượng số hạng của A là:  (40-21):1+1=20 số     (1)

\(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\) 

\(=>A>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)(20 số hạng)

            \(A>\frac{1}{40}\cdot20=\frac{20}{40}=\frac{1}{2}\)

Vậy A> \(\frac{1}{2}\)

b, Từ (1) =>  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}\)

             =>   \(A< \frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 20 số hạng)

            =>      A<  \(\frac{1}{20}\cdot20=1\)

      Vậy A< 1

23 tháng 4 2016

b, đặt cái 1/21 + 1/22 +1/23+....+1/40 là A nhé và A có 20 hạng tử

Ta  có 1/21 + 1/22 +1/ 23+......+1/30>1/30 +1/30 +....+1/30 =10/30 =1/3(*)

lại có 1/31 + 1/32+.....+1/40>1/40 + 1/40 + 1/40.....=10/40=1/4(**)

từ (*) và (**) => A> 1/3 +1/4

                       A>7/12

từng đó thì phải. Còn < 1/10 thì sai đề vì 7/12 > 1/10 mà.       Mình chỉ cm đc < 5/6 thôi

23 tháng 4 2016

a, ta có 1/51 + 1/52 + 1/53 + 1/54.....+1/100 > 1/100 + 1/100 + 1/100+......+1/100

=> 1/51 +1/52 +......+1/100 > 50/100 =1/2 ( vì có 50 hạng tử)

tương tự 1/51 + 1/52 +1/53 ..........+1/100 < 1/51 + 1/51 + 1/51 +1/51......

=> 1/51 + 1/52 + 1/53....+1/100 < 50/51 <1 

nên ta suy ra điều phải cm