tìm x\(\in\)N biet:
a) \(6⋮x-1\)
B) \(14⋮\left(2x+3\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.6⋮\left(x-1\right)\)
\(\Rightarrow x-1\inƯ\left(6\right)\)
\(\LeftrightarrowƯ\left(6\right)=\left\{1;2;3;6\right\}\)
\(\Rightarrow x\in\left\{2;3;4;7\right\}\)
\(b.14⋮\left(2x+3\right)\)
\(\Rightarrow2x+3\inƯ\left(14\right)\)
\(\LeftrightarrowƯ\left(14\right)=\left\{1;2;7;14\right\}\)
\(\Rightarrow x\in\left\{2\right\}\)
a) \(\left(x-1\right)^3=8=2^3\)
\(x-1=2\)
\(x=2+1=3\)
b) \(7^{2x-6}=49=7^2\)
\(2x-6=2\)
\(2x=6+2=8\)
\(x=8:2=4\)
c) \(\left(2x-14\right)^7=128=2^7\)
\(2x-14=2\)
\(2x=14+2=16\)
\(x=16:2=8\)
d) \(x^4\cdot x^5=5^3\cdot5^6=5^4\cdot5^5\)
\(x=5\)
e) \(3\cdot\left(x+2\right):7\cdot4=120\)
\(x+2=120:3\cdot7:4\)
\(x+2=70\)
\(x=70-2=68\)
Lời giải:
a. $(x-1)^3=8=2^3$
$\Rightarrow x-1=2$
$\Rightarrow x=3$
b. $7^{2x-6}=49=7^2$
$\Rightarrow 2x-6=2$
$\Rightarrow 2x=8$
$\Rightarrow x=4$
c. $(2x-14)^7=128=2^7$
$\Rightarrow 2x-14=2$
$\Rightarrow 2x=16$
$\Rightarrow x=18$
d.
$x^4.x^5=5^3.5^6$
$x^9=5^9$
$\Rightarrow x=5$
e.
$3(x+2):7=120:4=30$
$3(x+2)=30.7=210$
$x+2=210:3=70$
$x=70-2=68$
\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)
Giải phương trình sau :
\(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)
\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)
\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)
Giải bất phương trình sau :
\(3< n\left(n+1\right)< 31\)
\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)
Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)
\(\Rightarrow A\cap B=\left\{2\right\}\)
\(f\)) \(32^{-x}.16^x=1024\)
\(\left(2\right)^{-5x}.2^{4x}=2^{10}\)
\(\Leftrightarrow2^{4x-5x}=2^{10}\)
\(\Leftrightarrow2^{-x}=2^{10}\)
\(\Leftrightarrow-x=10\)
\(\Leftrightarrow x=-10\)
\(g\)) \(3^{x-1}.5+3^{x-1}=162\)
\(3^{x-1}.\left(5+1\right)=162\)
\(3^{x-1}.6=162\)
\(3^{x-1}=162:6\)
\(3^{x-1}=27\)
\(\Leftrightarrow3^{x-1}=3^3\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
\(h\)) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^6.\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)^6.\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=1\\\left(2x-1\right)^2=\left(1,-1\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x-1=-1\\2x-1=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\2x=0\\2x=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=0\\x=1\end{cases}}\)
\(i\)) \(5^x+5^{x+2}=650\)
\(5^x.\left(1+5^2\right)=650\)
\(5^x.26=650\)
\(5^x=650:26\)
\(5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
a/ 2x - 10 - [3x - 14 - (4 - 5x) - 2x] = 2
=> 2x - 10 - (3x - 14 - 4 + 5x - 2x) = 2
=> 2x - 10 - 3x + 14 + 4 - 5x + 2x = 2
=> -4x + 6 = 0
=> -4x = -6
=> x = 3/2
b/ \(\left(\frac{1}{4}x-1\right)+\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+1\right)=4,5\)
\(\Rightarrow\frac{1}{4}x-1+\frac{5}{6}x-2-\frac{3}{8}x-1-\frac{9}{2}=0\)
\(\Rightarrow\frac{17}{24}x-\frac{17}{2}=0\)
\(\Rightarrow\frac{17}{24}x=\frac{17}{2}\)
\(\Rightarrow x=12\)
Bài 5 :
Ta có : \(x+3⋮x+2\)
\(\Leftrightarrow x+2+1⋮x+2\)
\(\Leftrightarrow1⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-3;-1\right\}\)
Vậy ...
Bài 6 :
Ta có : \(2x+7⋮x+1\)
\(\Leftrightarrow2\left(x+1\right)+5⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{0;-2;-6;4\right\}\)
Vậy ...
a) \(\left(-12x^{13}y^{15}+6x^{10}y^{14}\right):\left(-3x^{10}y^{14}\right)\)
\(=-12x^{13}y^{15}:-3x^{10}y^{14}+6x^{10}y^{14}:-3x^{10}y^{14}\)
\(=4x^3y-2\)
b) \(\left(x-y\right)\left(x^2-2x+y\right)-x^3+x^2y\)
\(=x^3-2x^2+xy-x^2y+2xy-y^2-x^3+x^2y\)
\(=-2x^2+3xy-y^2\)
a) \(-12x^{13}\)\(y^{15}\)+\(6x^{10}\)\(y^{14}\):\(-3x^{10}\)\(y^{14}\)
=\(-12x\)\(^{13}\)\(y^{15}\)\(:\)\(-3x^{10}y^{14}\)\(+6x^{10}y^{14}:-3x^{10}y^{14}\)
\(=4x^3y-2\)
b)\(=\left(x-y\right)x^2-2x+y-x^3+x^2y\)
\(=x^3-x^2y-2x+y-x^3+x^2y\)
\(=-2x+y\)
a) x \(\vdots\) 6 => x \(\in\) Ư(6) = {1;2;3;6}
Mà 6 \(\vdots\) x - 1 => x \(\in\) {2;3;4;7}
Câu còn lại bn tự lm nha
a)
6 : x - 1
=> x - 1 thuộc Ư(6) = { 1; 2; 3; 6; -1; -2; -3; -6 }
Sau đó lập bảng tìm x
b)
tương tự
^^