Chung minh
\(A=\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+.....+\dfrac{1}{20}\)\(< \dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 1/10 + 1/12 + 1/14 + ... + 1/20 > 1/20 + 1/20 + ... + 1/20 . ( 10 số hạng ) = 1/20 * 10 . = 1/2 . Do đó A > 1/2 . Vậy bài toán được chứng minh .
— S = 1/4 + 2/4 +...+10/4 (1)
= 1 + 1/4 + 2/4 +...+ 9/4 (2)
=> Lấy (2) trừ đi (1) ta được:
1 — 10/4 = —6/4
Vì 14 = 14/1 = 84/6 mà —6/4 < 84/6
Do đó S < 14
Ta có: A\(=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}=\dfrac{2}{45}\)
\(A=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}\)
\(=\dfrac{2}{45}\)
-Chúc bạn học tốt-
a, - \(\dfrac{1}{10}\) + \(\dfrac{2}{5}\)\(x\) + \(\dfrac{7}{20}\) = \(\dfrac{1}{10}\)
\(\dfrac{2}{5}\)\(x\) = \(\dfrac{1}{10}\) - \(\dfrac{7}{20}\) + \(\dfrac{1}{10}\)
\(\dfrac{2}{5}\) \(x\) = - \(\dfrac{3}{20}\)
\(x\) = - \(\dfrac{3}{20}\): \(\dfrac{2}{5}\)
\(x\) = - \(\dfrac{3}{8}\)
b, \(\dfrac{1}{3}\) + \(\dfrac{1}{2}\): \(x\) = - \(\dfrac{1}{5}\)
\(\dfrac{1}{2}\): \(x\) = - \(\dfrac{1}{5}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{2}\): \(x\) = - \(\dfrac{8}{15}\)
\(x\) = \(\dfrac{1}{2}\): (- \(\dfrac{8}{15}\))
\(x\) = - \(\dfrac{15}{16}\)
6/21-(−12/44)+10/14−(1/(−4))−18/33
=2/7+12/44+5/7−((−1)/4)−6/11=2/7+12/44+5/7−((−1)/4)−6/11
=2/7+3/11+5/7+1/4−6/11=2/7+3/11+5/7+1/4−6/11
=(3/11−6/11)+(2/7+5/7)+1/4=(3/11−6/11)+(2/7+5/7)+1/4
=−3/11+7/7+1/4=−3/11+7/7+1/4
=43/44
Ta có:\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}>4\cdot\dfrac{1}{16}=\dfrac{1}{4}\)
\(\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}>4\cdot\dfrac{1}{20}=\dfrac{1}{5}\)
=>\(\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{20}>\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{9}{20}\)
=>A>\(\dfrac{1}{12}+\dfrac{9}{20}\)
\(\dfrac{1}{12}>\dfrac{1}{20}\)
=>\(A>\dfrac{1}{20}+\dfrac{9}{20}=\dfrac{1}{2}\)
Vậy...
1. Tính nhanh:
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=\dfrac{1}{2}-\dfrac{1}{8}\)
\(=\dfrac{3}{8}\)
2. Tính nhanh
Đặt \(A\) = \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(A\) \(=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
\(2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(2A=\dfrac{1}{3}-\dfrac{1}{13}\)
\(2A=\dfrac{10}{39}\)
\(A=\dfrac{10}{39}:2\)
\(A=\dfrac{5}{39}\)
a) \(\dfrac{-12}{15}+\dfrac{-4}{26}=\dfrac{-4}{5}+\dfrac{-2}{13}=\dfrac{-52-10}{65}=\dfrac{-62}{65}\)
b) \(5\dfrac{1}{3}-2\dfrac{4}{5}=\dfrac{16}{3}-\dfrac{14}{5}=\dfrac{80}{15}-\dfrac{42}{15}=\dfrac{38}{15}\)
c) \(\dfrac{4}{5}-\left(-\dfrac{2}{7}\right)+\dfrac{-5}{10}=\dfrac{4}{5}+\dfrac{2}{7}-\dfrac{1}{2}=\dfrac{56}{70}+\dfrac{20}{70}-\dfrac{35}{70}=\dfrac{41}{70}\)
d) \(-1\dfrac{2}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-9}{7}+\dfrac{3}{14}-\dfrac{5}{21}=\dfrac{-54}{42}+\dfrac{9}{42}-\dfrac{10}{42}=\dfrac{-55}{42}\)
e) \(12-\dfrac{11}{121}+\left(\dfrac{-8}{9}\right)-\left(-\dfrac{3}{7}\right)\)
\(=12-\dfrac{11}{121}-\dfrac{8}{9}+\dfrac{3}{7}\)
\(=\dfrac{91476}{7623}-\dfrac{693}{7623}-\dfrac{6776}{7623}+\dfrac{3267}{7623}\)
\(=\dfrac{7934}{693}\)
Ta có :
\(A=\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+...+\dfrac{1}{20}< \dfrac{1}{12}+\dfrac{1}{12}+...+\dfrac{1}{12}\left(6PS\right)\)
Mà\(\dfrac{1}{12}+\dfrac{1}{12}+...+\dfrac{1}{12}=6.\dfrac{1}{12}=\dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}\)
\(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{20}< \dfrac{1}{2}\\ \dfrac{1}{10}>\dfrac{1}{12}\\ \dfrac{1}{12}=\dfrac{1}{12}\\ ...\\ \dfrac{1}{20}< \dfrac{1}{12}\)
⇒Cộng 2 vế, ta có:
\(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+...+\dfrac{1}{20}< \dfrac{6}{12}=\dfrac{1}{2}\)
Vậy A<\(\dfrac{1}{2}\)