K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

đề bài thiếu

bạn ktra lại nhé

chúc bạn học tốt

26 tháng 12 2019

a) Đặt  \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\)(1)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

26 tháng 12 2019

a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

hờ hờ đợi mãi hổng có ai lm, huhu giúp tôi đi mn

27 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Xét \(VT=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(1\right)\)

Xét \(VP=\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) =>Đpcm

27 tháng 10 2016

LINK dưới đây bạn nhé

http://olm.vn/hoi-dap/question/143125.html

12 tháng 6 2019

BĐT

<=> \(\frac{3\left(a^2+b^2+c^2\right)+ab+bc+ac}{3\left(ac+bc+ac\right)}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)

<=>\(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{a\left(a\left(b+c\right)+bc\right)}{b+c}+...\right)\)

<=> \(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(a^2+b^2+c^2+\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)

Mà \(\frac{abc}{b+c}\le abc.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(ab+bc\right)\)

Khi đó BĐT 

<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{1}{2}\left(ab+bc+ac\right)\right)\)

=> \(a^2+b^2+c^2\ge ab+bc+ac\)(luôn đúng )

=> ĐPCM

Dấu bằng xảy ra khi a=b=c

Cách này chủ yếu biến đổi tương đương nên chắc phù hợp với lớp 8

12 tháng 6 2019

Nếu sử dụng SOS nhìn vào sẽ làm đc liền vì có Nesbitt lẫn \(\frac{a^2+b^2+c^2}{ab+bc+ac}\)

12 tháng 7 2018

Mình không biết đầu bài của bạn là gì nhưng nếu rút gọn thì bạn làm theo cách này nha

(a2+ab+b2).(a2 - ab + b2) - (a4+b4)

= (a2+b2)2-(ab)2-a4-b4

= a4+2(ab)2+b4-(ab)2-a4-b4

= (ab)2

Nếu bạn có gì khó hiểu với lời giải này thì cứ hỏi mình nha

12 tháng 7 2018

phân tích ra là:(a2+b2-ab)(a2+b2+ab)=(a2+b2)2 - (ab)2 hằng đẳng thức.

=>bất đẳng thức bằng (a2+b2)2 - (ab)2 -(a4+b4)=a4+b4+2a2b2 - (ab)2-(a4+b4)=a2b2.

đề chứng mình gì rứa?

7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???

3 tháng 3 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=bk,c=dk\)

Thay a = bk, c = dk vào \(\frac{7a^2+3ab}{2a^2-ab}\)và \(\frac{7c^2+3cd}{2c^2-cd}\), ta có:

\(\frac{7a^2+3ab}{2a^2-ab}=\frac{7\left(bk\right)^2+3.bk.b}{2\left(bk\right)^2-bk.b}=\frac{7b^2k^2+3b^2k}{2b^2k^2-b^2k}=\frac{b^2k\left(7k+3\right)}{b^2k\left(2k-1\right)}=\frac{7k+3}{2k-1}\)

\(\frac{7c^2+3cd}{2c^2-cd}=\frac{7\left(dk\right)^2+3.dk.d}{2\left(dk\right)^2-dk.d}=\frac{7d^2k^2+3d^2k}{2d^2k^2-d^2k}=\frac{d^2k\left(7k+3\right)}{d^2k\left(2k-1\right)}=\frac{7k+3}{2k-1}\)

\(\Rightarrow\frac{7a^2+3ab}{2a^2-ab}=\frac{7c^2+3cd}{2c^2-cd}\left(đpcm\right)\)

3 tháng 3 2019

Đặt a/b=c/d=k thì a=bk, c=dk

*7a+3ab/2a2-ab=7b2k2+3b2k/2b2k2-b2k=b2k(7k+3)/b2k(2k-1)=7k+3/2k-1  (1)

Tương tự 7c2+3cd/2c2-cd=7k+3/2k-1  (2)

từ (1) và (2) suy ra :

7a2+3ab2a2ab =7c2+3cd2c2cd