Với 2012\(\le\)x\(\le\)2014. Chứng minh \(\sqrt{2014-x}+\sqrt{x-2012}\le2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)
Áp dụng bất đẳng thức Cauchy, ta có:
\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)
Cộng vế theo vế, ta được:
\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)
Vậy....
Bài 1 : Ta có :
\(A=\sqrt{3x+\sqrt{6x-1}}+\sqrt{3x-\sqrt{6x-1}}\)
\(A\sqrt{2}=\sqrt{6x+2\sqrt{6x-1}}+\sqrt{6x-2\sqrt{6x-1}}\)
\(=\sqrt{6x-1+2\sqrt{6x-1}+1}+\sqrt{6x-1-2\sqrt{6x-1}+1}\)
\(=\sqrt{\left(\sqrt{6x-1}+1\right)^2}+\sqrt{\left(\sqrt{6x-1}-1\right)^2}\)
\(=\left|\sqrt{6x-1}+1\right|+\left|\sqrt{6x-1}-1\right|\)
\(=\sqrt{6x-1}+1+\sqrt{6x-1}-1\)
\(=2\sqrt{6x-1}\)
\(\Rightarrow A=\sqrt{2}\left(\sqrt{6x-1}\right)\)
Thay \(x=4+\sqrt{10}\) vào A ta được :
\(A=\sqrt{2}.\sqrt{6\left(4+\sqrt{10}\right)-1}=\sqrt{2}.\sqrt{24+6\sqrt{10}-1}\)
\(=\sqrt{2}.\sqrt{23+6\sqrt{10}}=\sqrt{46+12\sqrt{10}}\)
\(=\sqrt{36+12\sqrt{10}+10}=\sqrt{\left(6+\sqrt{10}\right)^2}=6+\sqrt{10}\)
Vậy \(A=6+\sqrt{10}\) tại \(x=4+\sqrt{10}\)
\(2\le\sqrt{x}+\sqrt{4-x}\le2\sqrt{2}\) (1) (ĐK: \(\left\{{}\begin{matrix}x\ge0\\4-x\ge0\end{matrix}\right.\)\(\Leftrightarrow0\le x\le4\))
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}2\le\sqrt{x}+\sqrt{4-x}\\\sqrt{x}+\sqrt{4-x}\le2\sqrt{2}\end{matrix}\right.\) (\(0\le x\le4\))
\(\Leftrightarrow\left\{{}\begin{matrix}4\le4+2\sqrt{x\left(4-x\right)}\\4+2\sqrt{x\left(4-x\right)}\le8\end{matrix}\right.\) (\(0\le x\le4\))
\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x\left(4-x\right)}\ge0\\\sqrt{x\left(4-x\right)}\le2\end{matrix}\right.\)(\(0\le x\le4\))
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(4-x\right)\le4\\0\le x\le4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\0\le x\le4\end{matrix}\right.\) (đpcm)
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2012}\ge0\\\left(3y+4\right)^{2014}\ge0\end{matrix}\right.\forall xy.\)
=> \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\) \(\forall xy\)
Mà \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0.\)
=> \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}=0\)
=> \(\left(2x-5\right)+\left(3y+4\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc em học tốt!
Giả sử đề bạn là 2012 thì mình làm nhé.
\(x^4+\sqrt{x^2+2012}=2012\)
\(\Leftrightarrow\left(x^4+x^2+\dfrac{1}{4}\right)=\left(x^2+2012-\sqrt{x^2+2012}+\dfrac{1}{4}\right)\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{2}\right)^2=\left(\sqrt{x^2+2012}-\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow x^2+\dfrac{1}{2}=\sqrt{x^2+2012}-\dfrac{1}{2}\)
\(\Leftrightarrow\left(x^2+2012-\sqrt{x^2+2012}+\dfrac{1}{4}\right)=2011,25\)
\(\Leftrightarrow\left(\sqrt{x^2+2012}-\dfrac{1}{2}\right)^2=2011,25\)
Tới đây thì đơn giản rồi. b làm tiếp nhé
Sửa đề: \(\sqrt{2010}-2\sqrt{2012}+\sqrt{2014}< 0\)
Ta có: \(\left(\sqrt{2010}+\sqrt{2014}\right)^2\)
\(=2010+2\sqrt{2010\cdot2014}+2014\)
\(=4024+2\sqrt{\left(2012-2\right)\left(2012+2\right)}\)
\(=2\cdot2012+2\sqrt{2012^2-2^2}\)
\(< 2\cdot2012+2\cdot\sqrt{2012^2}=2\cdot2012+2\cdot2012\)
\(=4\cdot2012=\left(2\sqrt{2012}\right)^2\)
\(\Rightarrow\sqrt{2010}+\sqrt{2014}< 2\sqrt{2012}\)
\(\Leftrightarrow\sqrt{2010}-2\sqrt{2012}+\sqrt{2014}< 0\)
Áp dụng BĐT Bunhiacopxki , ta có :
\(\left(2014-x+x-2012\right)\left(1^2+1^2\right)\ge\left(\sqrt{2014-x}+\sqrt{x-2012}\right)^2\)
\(\Leftrightarrow\left(\sqrt{2014-x}+\sqrt{x-2012}\right)^2\le4\left(2012\le x\le2014\right)\)
\(\Leftrightarrow\sqrt{2014-x}+\sqrt{x-2012}\le2\)
\("="\Leftrightarrow x=2013\left(TM\right)\)