K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:
$|a+b|=|a-b|$

$\Rightarrow |a+b|^2=|a-b|^2$

$\Leftrightarrow (a+b)^2=(a-b)^2$

$\Leftrightarrow a^2+2ab+b^2=a^2-2ab+b^2$

$\Leftrightarrow 4ab=0$

$\Rightarrow a=0$ hoặc $b=0$ (đpcm)

15 tháng 9 2021

\(\left|a+b\right|=\left|a-b\right|\)

\(\Rightarrow\orbr{\begin{cases}a+b=a-b\\a+b=-\left(a-b\right)\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}a-a=-b-b\\a+b=-a+b\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}0=-2b\\a+a=b-b\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}b=0\\2a=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}b=0\\a=0\end{cases}}\)

1 tháng 8 2018

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)    (do a+b+c = 0)

=>  \(B=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

=>   đpcm

DD
11 tháng 8 2021

\(\hept{\begin{cases}a-2b\inℚ\\3a+4b\inℚ\end{cases}}\Rightarrow2\left(a-2b\right)+\left(3a+4b\right)=5a\inℚ\Leftrightarrow a\inℚ\)

\(\Rightarrow-2b\inℚ\Leftrightarrow b\inℚ\).

Ta có đpcm. 

NM
14 tháng 8 2021

ta có :

\(a=\frac{2\left(a+3b\right)+3\left(3a-2b\right)}{11}\) nên a là số hữu tỉ 

\(b=\frac{-3\left(a+3b\right)+\left(3a-2b\right)}{-11}\) nên b là số hữu tỉ

NV
6 tháng 8 2021

\(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2+4ab=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+1+2ab+a^2b^2=0\)

\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-\left(ab+1\right)\right]^2=0\)

\(\Leftrightarrow\left(a+b\right)^2-\left(ab+1\right)=0\)

\(\Leftrightarrow ab+1=\left(a+b\right)^2\)

\(\Rightarrow\sqrt{ab+1}=\left|a+b\right|\) là số hữu tỉ (đpcm)

DD
11 tháng 8 2021

\(\hept{\begin{cases}3a-2b\inℚ\\2a+5b\inℚ\end{cases}}\Rightarrow5\left(3a-2b\right)+2\left(2a+5b\right)=19a\inℚ\Leftrightarrow a\inℚ\)

\(\Rightarrow-2b\inℚ\Leftrightarrow b\inℚ\).

Ta có đpcm.