Cho tam giác ABC , trên đoạn thẳng BC , AC lấy các điểm M , N sao cho 2MB = 3 NC . Gọi I là trung điểm của AM . Tìm điểm K \(\in\) AB sao cho N , I , K thẳng hàng .
HELP ME !!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AMB và AMC có:
AB=AC (Giả thiết)
AM là cạnh chung)
MB=MC(Giả thiết)
=> tam giác AMB = tam giác AMC (c.c.c)
a) Xét ΔABCΔABC có:
AB=AC(gt)AB=AC(gt)
=> ΔABCΔABC cân tại A.
=> ˆABC=ˆACBABC^=ACB^ (tính chất tam giác cân).
Ta có:
{ˆABM+ˆABC=1800ˆACN+ˆACB=1800{ABM^+ABC^=1800ACN^+ACB^=1800 (các góc kề bù).
Mà ˆABC=ˆACB(cmt)ABC^=ACB^(cmt)
=> ˆABM=ˆACN.ABM^=ACN^.
Xét 2 ΔΔ ABMABM và ACNACN có:
AB=AC(gt)AB=AC(gt)
ˆABM=ˆACN(cmt)ABM^=ACN^(cmt)
BM=CN(gt)BM=CN(gt)
=> ΔABM=ΔACN(c−g−c)ΔABM=ΔACN(c−g−c)
=> AM=ANAM=AN (2 cạnh tương ứng).
b) Theo câu a) ta có AM=AN.AM=AN.
=> ΔAMNΔAMN cân tại A.
=> ˆM=ˆNM^=N^ (tính chất tam giác cân)
Xét 2 ΔΔ vuông BMEBME và CNFCNF có:
ˆMEB=ˆNFC=900(gt)MEB^=NFC^=900(gt)
BM=CN(gt)BM=CN(gt)
ˆM=ˆN(cmt)M^=N^(cmt)
=> ΔBME=ΔCNFΔBME=ΔCNF (cạnh huyền - góc nhọn)
a) Xét ΔAMB và ΔAMC có
AB=AC(gt)
MB=MC(M là trung điểm của BC)
AM chung
Do đó: ΔAMB=ΔAMC(c-c-c)
b) Sửa đề: AM=MD
Xét ΔAMC và ΔDMB có
AM=DM(gt)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔAMC=ΔDMB(c-g-c)
⇒AC=DB(Hai cạnh tương ứng)
c) Ta có: ΔAMC=ΔDMB(cmt)
nên \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)
mà \(\widehat{ACM}\) và \(\widehat{DBM}\) là hai góc ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)
a/
Xét tg ABM và tg ACM có
AB=AC(gt); MB=MC(gt); AM chung => tg ABM = tg ACM (c.c.c)
b/
Ta có
AB=AC (gt) => tg ABC cân tại A
MB=MC (gt) => AM là trung tuyến của tg ABC
=> AM là phân giác của \(\widehat{BAC}\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường phân giác của góc ở đỉnh)
c/
Xét tg ABM và tg NCM có
AM=MN (gt)MB=MC (gt)
\(\widehat{AMB}=\widehat{NMC}\)(góc đối đỉnh)
=> tg ABM = tg NCM (c.g.c) \(\Rightarrow\widehat{BAM}=\widehat{CNM}\)=> AB // CN (hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành 2 góc so le trong bằng nhau thì chúng // với nhau)
d/
Nối IK cắt BC tại M'
Ta có AB // CN => \(\widehat{IBM'}=\widehat{KCM'}\)(góc so le trong) và \(\widehat{BIM'}=\widehat{CKM'}\)(góc so le trong)
BI=CK (gt)
=> tg BIM' = tg CKM' (g.c.g) => M'B=M'C => M' là trung điểm của BC mà M cũng là trung điểm của BC (gt) => M trùng M'
=> I; M; K thẳng hàng
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét tứ giác ANMC có
I là trung điểm của AM
I là trung điểm của CN
Do đó: ANMC là hình bình hành
Suy ra: AN//MC
hay AN//BC
c: Xét tứ giác ABMK có
I là trung điểm của BK
I là trung điểm của AM
Do đó: ABMK là hình bình hành
Suy ra: AK//BM
hay AK//BC
mà AN//BC
và AN,AK có điểm chung là A
nên A,N,K thẳng hàng
Ta có hình vẽ:
Vì CN = 2CI nên CI = IN (đã kí hiệu trên hình)
Vì BK = 2BI nên BI = IK (đã kí hiệu trên hình)
a/ Xét tam giác AMB và tam giác AMC có:
AM: cạnh chung
AB = AC (GT)
BM = MC (GT)
=> tam giác AMB = tam giác AMC (c.c.c)
b/ Xét tam giác IMC và tam giác IAN có:
CI = IN (đã chứng minh đầu bài)
AI = IM (GT)
\(\widehat{AIN}\)=\(\widehat{MIC}\) (đối đỉnh)
=> tam giác IMC = tam giác IAN (c.g.c)
=> \(\widehat{ANI}\)=\(\widehat{ICM}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AN//BC (đpcm)
c/ Xét tam giác IMB và tam giác IAK có:
BI = IK (đã chứng minh đầu bài)
AI = IM (GT)
\(\widehat{BIM}\)=\(\widehat{KIA}\) (đối đỉnh)
=> tam giác IMB = tam giác IAK (c.g.c)
=> \(\widehat{AKI}\)=\(\widehat{IBM}\)(2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AK//BC
Ta có: AN // BC
AK // BC
=> AN trùng AK
hay N,A,K thẳng hàng
moi nguoi oi giup minh voi