K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

Ta có: \(a^2+3=\left(a+b\right)\left(a+c\right)\)

Áp dụng BĐT AM-GM ta có:

\(VT=\dfrac{a}{a^2+7}+\dfrac{b}{b^2+7}+\dfrac{c}{c^2+7}\le\sum\dfrac{a}{4\sqrt{a^2+3}}=\sum\dfrac{a}{4\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\sum\dfrac{a}{4}.\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\sum\dfrac{1}{8}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)=\dfrac{3}{8}\)

Dấu = xảy ra khi a=b=c=1

P/s:\(\sum\limits_{x,y,z}x=x+y+z\) :Tổng hoán vị

20 tháng 11 2018

Akai Haruma giúp em với !!!

24 tháng 5 2018

a) Nhận thấy AB + BC = AC nên điểm B nằm giữa hai điểm A và C

b, c) HS tự làm.

d) Nhận thấy AB + AC = 1 2 BC +  1 2 BC = BC nên điểm A nằm giữa hai điểm B và C.

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Lời giải:

Áp dụng BĐT Schur bậc 3 ta có:

$abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2c)(3-2a)(3-2b)$

$\Leftrightarrow abc\geq 12(ab+bc+ac)-18(a+b+c)+27-8abc$

$\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27$

$\Leftrightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3$

$\Rightarrow 2abc\geq \frac{8}{3}(ab+bc+ac)-6(*)$

Mặt khác:

$\frac{8}{3}(ab+bc+ac)-6-[3(ab+bc+ac)-7]=1-\frac{ab+bc+ac}{3}$

$=\frac{(a+b+c)^2}{9}-\frac{ab+bc+ac}{3}=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{9}\geq 0$

$\Rightarrow \frac{8}{3}(ab+bc+ac)-6\geq 3(ab+bc+ac)-7(**)$

Từ $(*); (**)\Rightarrow 2abc\geq 3(ab+bc+ac)-7$

$\Rightarrow 3(ab+bc+ac)-2abc\leq 7$

Dấu "=" xảy ra khi $a=b=c=1$ (vô lý vì $c>\frac{3}{2}$)

Do đó dấu "=" không xảy ra nên $3(ab+bc+ac)-2abc< 7$ (đpcm)

31 tháng 1 2017

ab+bc+ca \(\le\) a^2+b^2+c^2

<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng

a^2+b^2+c^2 < 2(ab+bc+ca)

<=> a^2+b^2+c^2-2ab-2bc-2ca < 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng

Ta co đpcm

31 tháng 1 2017

a,b,c > 0

Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca 

Cộng theo vế : 2(a2+b2+c2\(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca

theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2

b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2

Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2