K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

4 tháng 7 2015

a) tam giác ABC cân tại A.

AH là đường cao= > đồng thời là trung tuyến, PHÂN GIÁC... => HB=HC

D,E là trung điểm => 4 đoạn DB=BH=HE=EC

tam giác DMB và tam giác ENC:

góc M= góc N=90

DB=EC

góc B=góc C 

=> tam giác DMB= tam giác ENC (ch.gn)

=> BM=NC

ta có: BM+AM=AB

NC+AN=AC

MÀ BM=NC. AB=AC => AM=AN

=> TAM GIÁC AMN CÂN TẠI A. AH LÀ PG => AH LÀ ĐƯỜNG CAO <=> AH VUÔNG GÓC MN

B) AH VUÔNG GÓC BC => MN//BC HAY MN//DE

TAM GIÁC DMB= TAM GIÁC ENC (CMT)=> GÓC MDB= GÓC NEC

MÀ MDB=NMD (SLT); GÓC NEC=MNE(SLT)

=> GÓC NMD= GÓC MNE

=> DENM LÀ HÌNH THANG CÂN

4 tháng 7 2015

HÌNH NÈ

12 tháng 4 2021

hình bạn tự vẽ 

a) Xét ΔHBA và ΔABC có :

^H = ^A = 900

^B chung

=> ΔHBA ~ ΔABC (g.g)

b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :

AB2 = BH2 + AH2

=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm

Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC

=> BC = AB2/HB = 152/9 = 25cm

Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm

=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2

c) mình chưa nghĩ ra :v 

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA∼ΔABC(g-g)

11 tháng 12 2021

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra:AH=DE

12 tháng 9 2019

A B C H D E N M F

a) Tam giác ABC cân tại A có đường cao AH xuất phát từng đỉnh nên đồng thời là đường trung tuyến.

Từ đó H là trung điểm BC. Có ngay: DH là đường trung bình nên DH// AC -> Tứ giác ADHC là hình thang. 

b) Chứng minh AN \(\perp\) HM

 Gọi giao điểm của AN và HM là F. Cần chứng minh ^AFH = 90o.

Tới đây tịt ngòi rồi:(( khi nào nghĩ ra làm tiếp:v

12 tháng 9 2019

Làm nốt bài tth_new nha.

Xét tam giác EHC có NH là đường trung bình nên \(NM//HC\Rightarrow NM\perp AH\)

Mà \(HE\perp AC\) nên N là trực tâm.Khi đó \(AN\perp HM\)

a) Vì HD vuông góc với AB 

=> HDB = HDA = 90 độ

Mà BAC = 90 độ (gt)

=> BAC = BDH = 90 độ

Mà 2 góc này ở vị trí đồng vị

=> DH //AE

=> DHEA là hình thang 

Mà HE vuông góc với AC

=> HEA = 90 độ

=> HEA = BAC = 90 độ

=> DHEA là hình thang cân 

=> DE = AH ( hình thang  cân hai đường chéo bằng nhau)

=> dpcm