K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

c) \(\dfrac{1}{y}\sqrt{19y}=\sqrt{19y\cdot\dfrac{1}{y^2}}=\sqrt{\dfrac{19}{y}}\)

d) \(\dfrac{1}{3y}\cdot\sqrt{\dfrac{27}{y^2}}\cdot y=\sqrt{\dfrac{1}{9}\cdot\dfrac{27}{y^2}}=\sqrt{\dfrac{3}{y^2}}\)

Bài 3: 

a) Ta có: \(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\cdot\dfrac{1}{\sqrt{3}+5}\)

\(=\left(\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{15\left(3+\sqrt{3}\right)}{6}\right)\cdot\dfrac{1}{\sqrt{3}+5}\)

\(=\left(\sqrt{3}+1-2-\sqrt{3}+\dfrac{5\left(3+\sqrt{3}\right)}{2}\right)\cdot\dfrac{1}{\sqrt{3}+5}\)

\(=\left(-1+\dfrac{5\left(3+\sqrt{3}\right)}{2}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\dfrac{-2+15+5\sqrt{3}}{2\left(5+\sqrt{3}\right)}\)

\(=\dfrac{13+5\sqrt{3}}{10+2\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} 6\sqrt{5}x-8y=30-4\sqrt{7}\\ -6\sqrt{5}x+24\sqrt{7}y=54\end{matrix}\right.\)

\(\Rightarrow (24\sqrt{7}-8)y=84-4\sqrt{7}\) (cộng 2 pt theo vế)

\(\Rightarrow y=\frac{84-4\sqrt{7}}{24\sqrt{7}-8}=\frac{21-\sqrt{7}}{6\sqrt{7}-2}\)

\(x=\frac{18-8\sqrt{7}y}{-2\sqrt{5}}=\sqrt{5}\)

Vậy.........

Ói , hoa mắt chóng mặt nhức đầu ,

9 tháng 8 2017

sao giống có chữa quá z

a: \(16x^3+0,25yz^3\)

\(=0,25\cdot x^3\cdot64+0,25\cdot yz^3\)

\(=0,25\left(64x^3+yz^3\right)\)

b: \(x^4-4x^3+4x^2\)

\(=x^2\cdot x^2-x^2\cdot4x+x^2\cdot4\)

\(=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)

c: \(x^3+x^2y-xy^2-y^3\)

\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\cdot\left(x+y\right)^2\)

d: \(x^3+x^2+x+1\)

\(=x^2\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+1\right)\)

e: \(x^4-x^2+2x-1\)

\(=x^4-\left(x^2-2x+1\right)\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)

f: \(2x^2-18\)

\(=2\cdot x^2-2\cdot9\)

\(=2\left(x^2-9\right)=2\left(x-3\right)\left(x+3\right)\)

g: \(x^2+8x+7\)

\(=x^2+x+7x+7\)

\(=x\left(x+1\right)+7\cdot\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)

h: \(x^4y^4+4\)

\(=x^4y^4+4x^2y^2+4-4x^2y^2\)

\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)

i: \(x^4+4y^4\)

\(=x^4+4x^2y^2+4y^4-4x^2y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

k: \(x^2-2x-15\)

\(=x^2-5x+3x-15\)

\(=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)

26 tháng 7 2018

a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)

c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)

d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)

e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng