K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//KC và MN=KC

=>NCKM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MK

hay góc BMK=90 độ

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//PC và MN=PC

=>NCPM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MP

hay góc BMP=90 độ

a) Tg HAB có NB=NH, MA=MH
=> MN là đường tb của tg HAB
=> MN//AB và MN=1/2AB
Mà AB//CD và AB=CD
=> MN//CD và MN=CD=KC(Vi K là trung diem CD)
hay MN//KC và MN=KC
Tứ giac MNCK có MN//KC và MN=KC
=> MNCK la hbh
b) Tg BCM có 
BH_|_MC(gt)
MN_|_BC (vì MN//AB mà AB_|_BC)
MN cắt BH tại N
=> N la trực tam cua tg BCM
=> CN_|_MB
mà CN//MK (do tu giac MNCK la hbh)
=> MK_|_MB hay \(\widehat{BMK}\)=900

Hình bn tự vẽ

a, Xét tam giác ABH có:

AM=MC( M là trung điểm của AC)

BN=NH(N là trung điểm của BH)

=>MN là đường trung bình của tam giác ABH

=>MN=1/2AB (1)

Hay MN<AB

b,Vì MN là đường trung bình của tam giác ABH nên MN // AB (2) 

Mà AB//DC( ABCD là hình chữ nhật)->AB//KC (K thuộc DC) (3)

Từ (2),(3)=>MN// KC

Vì K là trung điểm của DC=>KC=1/2DC(4)

Mà AB=DC( ABCD là hình chữ nhật) (5) 

Từ(1),(4),(5)=>MN=KC

Tứ giác MNCK có:MN//KC(cmt)

                             MN=KC(cmt)

=> MNCK là hbh

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình

=>MN//AB và MN=AB/2

=>MN//KC và MN=KC

=>NCKM là hình bình hành

b; Xét ΔBMC có

BH là đường cao

MN là đường cao

BH cắt MN tại N

DO đó:N là trực tâm

=>CN vuông góc với BM

=>BM vuông góc với MK

hay góc BMK=90 độ

11 tháng 7 2016

chỗ AH sao vuông góc với Ac đc bn bạn xem đề lại thử nha!!! 

2AD=5cm

=>\(AD=\dfrac{5}{2}=2,5\left(cm\right)\)

ABCD là hình chữ nhật

=>\(AC^2=AB^2+AD^2\)

=>\(AC^2=5^2+2,5^2=31,25\)

=>\(AC=\sqrt{31,25}=\dfrac{5\sqrt{5}}{2}\left(cm\right)\)

Xét ΔHAB có M,N lần lượt là trung điểm của HA,HB

=>MN là đường trung bình của ΔHAB

=>\(MN=\dfrac{AB}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)