cho a+b+c=1 và \(a^2+b^2+c^2=1\)
tính \(a^4+b^4+c^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bình phương 2 vế a+b+c=0, tính được ab+bc+ca=-1/2.
Bình phương 2 vế ab+bc+ca=-1/2, tính được (ab)2+(bc)2+(ca)2=1/4
Bình phương 2 vế a2+b2+c2=1, ta có:
a4+b4+c4+2[(ab)2+(bc)2+(ac)2]=1
<=> a4+b4+c4+1/2=1
<=> M=1/2
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)
hay \(ab+bc+ac=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)
Ta có: \(M=a^4+b^4+c^4\)
\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)
\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy: \(M=\dfrac{1}{2}\)
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )
\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)
Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )
\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)
Vậy ...
ta có:
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
<=>(a+b+c)2=a2+b2+c2+2.(ab+bc+ac)
=>02 = 1 +2.(ab+bc+ac)
=>ab+bc+ac = -1/2
(ab+bc+ac)2=a2b2+a2c2+b2c2+ab2c+a2bc+abc2
<=>(ab+bc+ac)2=a2b2+a2c2+b2c2+abc.(a+b+c)
=> (-1/2)2=a2b2+a2c2+b2c2+abc.0
=>a2b2+a2c2+b2c2=1/4
suy ra:
(a2+b2+c2)2=a4+b4+c4+a2b2+a2c2+b2c2
=>12=a4+b4+c4+1/4
=>a4+b4+c4=1-1/4=3/4
ta có:
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac
<=>(a+b+c)^2=a^2+b^2+c^2+2.(ab+bc+ac)
=>0^2 = 1 +2.(ab+bc+ac)
=>ab+bc+ac = -1/2 (ab+bc+ac)2=a2b 2+a2c 2+b2c 2+ab2c+a2bc+abc2
<=>(ab+bc+ac)2=a2b 2+a2c 2+b2c 2+abc.(a+b+c)
=> (-1/2)2=a2b 2+a2c 2+b2c 2+abc.0 =>a2b 2+a2c 2+b2c 2=1/4
suy ra:
(a2+b2+c2 ) 2=a4+b4+c4+a2b 2+a2c 2+b2c 2
=>12=a4+b4+c4+1/4
=>a4+b4+c4=1-1/4=3/4
:A
\(\begin{array}{l}A + B + C\\ = (3{x^4} - 2{x^3} - x + 1) + ( - 2{x^3} + 4{x^2} + 5x) + ( - 3{x^4} + 2{x^2} + 5)\\ = 3{x^4} - 2{x^3} - x + 1 - 2{x^3} + 4{x^2} + 5x - 3{x^4} + 2{x^2} + 5\\ = (3{x^4} - 3{x^4}) + ( - 2{x^3} - 2{x^3}) + (4{x^2} + 2{x^2}) + ( - x + 5x) + (1 + 5)\\ = 0 + ( - 4{x^3}) + 6{x^2} + 4x + 6\\ = - 4{x^3} + 6{x^2} + 4x + 6\\A - B + C\\ = (3{x^4} - 2{x^3} - x + 1) - ( - 2{x^3} + 4{x^2} + 5x) + ( - 3{x^4} + 2{x^2} + 5)\\ = 3{x^4} - 2{x^3} - x + 1 + 2{x^3} - 4{x^2} - 5x - 3{x^4} + 2{x^2} + 5\\ = (3{x^4} - 3{x^4}) + ( - 2{x^3} + 2{x^3}) + ( - 4{x^2} + 2{x^2}) + ( - x - 5x) + (1 + 5)\\ = 0 + 0 + ( - 2{x^2}) - 6x + 6\\ = - 2{x^2} - 6x + 6\\A - B - C\\ = (3{x^4} - 2{x^3} - x + 1) - ( - 2{x^3} + 4{x^2} + 5x) - ( - 3{x^4} + 2{x^2} + 5)\\ = 3{x^4} - 2{x^3} - x + 1 + 2{x^3} - 4{x^2} - 5x + 3{x^4} - 2{x^2} - 5\\ = (3{x^4} + 3{x^4}) + ( - 2{x^3} + 2{x^3}) + ( - 4{x^2} - 2{x^2}) + ( - x - 5x) + (1 - 5)\\ = 6{x^4} + 0 + ( - 6{x^2}) - 6x + ( - 4)\\ = 6{x^4} - 6{x^2} - 6x - 4\end{array}\)
Ta có: a+b+c=0
nên \(\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Leftrightarrow2ab+2ac+2bc=-1\)
\(\Leftrightarrow ab+ac+bc=\dfrac{-1}{2}\)
\(\Leftrightarrow\left(ab+ac+bc\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2=\dfrac{1}{4}\)
Ta có: \(a^2+b^2+c^2=1\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\cdot\dfrac{1}{4}=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-\dfrac{1}{2}=\dfrac{1}{2}\)
\(\Leftrightarrow a^4+b^4+c^4+\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{4}=\dfrac{2}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)
Vậy: \(a^4+b^4+c^4+\dfrac{1}{4}=\dfrac{3}{4}\)
\(a,A+B-C=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-5x^3y-3x^2y^2-17y^4-1\)
\(=\left(16x^4-15x^4\right)+\left(-8x^3y+3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2-3x^2y^2\right)+\left(-9y^4-6y^4-17y^4\right)-1\)
\(=x^4-10x^3y-x^2y^2-32y^4-1\)
\(b,A-C+B=A+B-C\) ( giống câu a )
\(a,\)
\(A+B+C\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-5x^3y-3x^2y^2-17y^4-1\)
\(=\left(16x^4-15x^4\right)+\left(-9y^4-6y^4-17y^4\right)+\left(-8x^3y+3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2-3x^2y^2\right)-1\)
\(=x^4-32y^4-10x^3y-x^2y^2-1\)
\(b,\)
\(A-C+B=A+B-C=x^4-32y^4-10x^3y-x^2y^2-1\)
1)Từ đề bài:
`=>a^2+4b+4+b^2+4c+4+c^2+4a+4=0`
`<=>(a+2)^2+(b+2)^2+(c+2)^2=0`
`<=>a=b=c-2`
`ab+bc+ca=abc`
`<=>1/a+1/b+1/c=1`
`<=>(1/a+1/b+1/c)^2=1`
`<=>1/a^2+1/b^2+1/c^2+2/(ab)+2/(bc)+2/(ca)=1`
`<=>1/a^2+1/b^2+1/c^2=1-(2/(ab)+2/(bc)+2/(ca))`
`a+b+c=0`
Chia 2 vế cho `abc`
`=>1/(ab)+1/(bc)+1/(ca)=0`
`=>2/(ab)+2/(bc)+2/(ca)=0`
`=>1/a^2+1/b^2+1/c^2=1-0=1`
Sửa đề chút: a+b+c=0
Ta có: \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow2\left(ab+bc+ca\right)=0-1\)
\(\Rightarrow ab+bc+ca=-\frac{1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2ab^2c+2bc^2a+2ca^2b=\frac{1}{4}\)
\(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc.\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\frac{1}{4}\)
Ta có: \(a^2+b^2+c^2=1\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=1\)
\(a^4+b^4+c^4+2.\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]=1\)
\(a^4+b^4+c^4+2.\frac{1}{4}=1\)
\(a^4+b^4+c^4+\frac{1}{2}=1\)
\(\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)
Vậy \(a^4+b^4+c^4=\frac{1}{2}\)
Nếu mk sửa đề sai thì bảo mk nhé.( mk lm đúng để của b thử rồi nhưng ko ra)
bn sửa đề thì mk cx ra rồi nhưng quan trọng nó là 1 chứ ko phải là 0