\(\left(-2\right)^{4x+2}=\dfrac{1}{64}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{8^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...0...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)
\(=0\)
Vậy...
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
\(\left(1\right)=\dfrac{y}{x\left(2x-y\right)}-\dfrac{4x}{y\left(2x-y\right)}=\dfrac{y^2-4x^2}{xy\left(2x-y\right)}=\dfrac{-\left(y-2x\right)\left(y+2x\right)}{xy\left(y-2x\right)}=\dfrac{-y-2x}{xy}\\ \left(2\right)=\dfrac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x+6}{\left(x+2\right)^2}\\ \left(3\right)=\dfrac{4\left(x+2\right)}{\left(x+2\right)\left(4x+7\right)}=\dfrac{4}{4x+7}\\ \left(4\right)=\dfrac{4x^2+15x+4+4x+7+1}{\left(x+2\right)\left(x+3\right)\left(4x+7\right)}=\dfrac{4x^2+19x+12}{\left(x+2\right)\left(x+3\right)\left(4x+7\right)}\)
a,
\(\left(4x-\dfrac{1}{3}\right)^6=1\\ \Rightarrow\left[{}\begin{matrix}4x-\dfrac{1}{3}=1\\4x-\dfrac{1}{3}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{-1}{6}\end{matrix}\right.\)
b,
\(\left(5x-\dfrac{2}{3}\right)^2=0\\ \Rightarrow5x-\dfrac{2}{3}=0\\ 5x=\dfrac{2}{3}\\ x=\dfrac{2}{15}\)
c,
\(\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=-8\\ \Rightarrow\dfrac{1}{3}x-\dfrac{1}{2}=-2\\ \dfrac{1}{3}x=\dfrac{-3}{2}\\ x=\dfrac{-9}{2}\)
d,
\(\dfrac{81}{3^n}=3\\ \Leftrightarrow3^4:3^n=3^1\\\Leftrightarrow3^{4-n}=3^1 \\ \Rightarrow n=3\)
e,
\(\dfrac{\left(-2\right)^x}{64}=-2\\ \Leftrightarrow\left(-2\right)^x:\left(-2\right)^6=\left(-2\right)^1\\ \Leftrightarrow\left(-2\right)^{x-6}=\left(-2\right)^1\\ \Rightarrow x=7\)
f,
\(\left(-20\right)^n:10^n=16\\ \left[\left(-20\right):10\right]^n=16\\ \left(-2\right)^n=\left(-2\right)^4\\ \Rightarrow n=4\)
Bài 1:
a) \(\left(4x-\dfrac{1}{3}\right)^6=1\)
\(\Rightarrow4x-\dfrac{1}{3}=1\)
\(4x=1+\dfrac{1}{3}\)
\(4x=\dfrac{4}{3}\)
\(x=\dfrac{4}{3}:4\)
\(x=\dfrac{1}{3}\)
b) \(\left(5x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow5x-\dfrac{2}{3}=0\)
\(5x=\dfrac{2}{3}\)
\(x=\dfrac{2}{3}:5\)
\(x=\dfrac{2}{15}\)
c) \(\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=-8\)
\(\Rightarrow\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=\left(-2\right)^3\)
\(\dfrac{1}{3}x-\dfrac{1}{2}=-2\)
\(\dfrac{1}{3}x=-2+\dfrac{1}{2}\)
\(\dfrac{1}{3}x=\dfrac{-3}{2}\)
\(x=\dfrac{-3}{2}:\dfrac{1}{3}\)
\(x=\dfrac{-9}{2}\)
d) \(\dfrac{81}{3^n}=3\)
\(\Rightarrow\dfrac{3^4}{3^n}=3\)
\(\Rightarrow3^n.3=3^4\)
\(3^{n+1}=3^4\)
n + 1 = 4
n = 4 - 1
n = 3
e) \(\dfrac{\left(-2\right)^x}{64}=-2\)
\(\Rightarrow\dfrac{\left(-2\right)^x}{\left(-2\right)^6}=-2\)
\(\Rightarrow\left(-2\right)^x=\left(-2\right)^6.\left(-2\right)\)
\(\left(-2\right)^x=\left(-2\right)^7\)
x = 7
f) (-20)n : 10n = 16
(-20 : 10)n = 16
(-2)n = 16
(-2)n = (-2)4
n = 4.
a.\(\dfrac{5\left(x-3\right)}{4\left(x+1\right)}\) : \(\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x+1\right)^2}\)
= \(\dfrac{5\left(x-3\right)}{4\left(x+1\right)}\). \(\dfrac{\left(x+1\right)^2}{\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{5\left(x+1\right)}{4\left(x+3\right)}\)
b. \(\dfrac{6\left(x+8\right)}{7\left(x-1\right)}\). \(\dfrac{\left(x-1\right)^2}{\left(x-8\right)\left(x+8\right)}\)
= \(\dfrac{6\left(x-1\right)}{7\left(x-8\right)}\)
c.Tương tự hai câu trên nka!!
d. (\(\dfrac{1}{x\left(x+1\right)}\)-\(\dfrac{2-x}{x+1}\)).(\(\dfrac{x}{x-1}\))
=( \(\dfrac{1}{x\left(x+1\right)}\)-\(\dfrac{2x-x^2}{x\left(x+1\right)}\)). ....
= \(\dfrac{\left(1-x\right)^2}{x\left(x+1\right)}\). ...
= \(\dfrac{x-1}{x+1}\)
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)
\(\Leftrightarrow2^{4x+2}=2^{-6}\)
=>4x+2=-6
=>4x=-8
hay x=-2