A= 1/5-1/52+1/53-1/54+...+1/599-1/5100
B= 1.2+2.3+3.4+...+2017.2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
0\(a.S=1-5+5^2-5^3+...+5^{98}-5^{99}\\ 5S=5-5^2+5^3-5^4+.....+5^{99}-5^{100}\\ 5S+S=\left(5-5^2+5^3-5^4+.....+5^{99}-5^{100}\right)+\left(1-5^{ }+5^2-5^3+.....+5^{98}-5^{99}\right)\\ 6S=1-5^{100}\\ S=\dfrac{1-5^{100}}{6}\\ \)
\(b,S6=1-5^{100}\\ 1-S6=5^{100}\)
=> 5100 chia 6 du 1
\(A=2017:\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2017.2018}\right)\)
\(=2017:\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)
\(=2017:\left(1-\dfrac{1}{2018}\right)\)
\(=2017:\dfrac{2017}{2018}\)
\(=2017\cdot\dfrac{2018}{2017}\)
\(=2018\)
#NgDat
\(A=2017:\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\right)\)
\(A=2017:\left(\dfrac{1}{1}\cdot\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{1}{3}+\dfrac{1}{3}\cdot\dfrac{1}{4}+...+\dfrac{1}{2017}\cdot\dfrac{1}{2018}\right)\)
\(A=2017:\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\right)\)
\(A=2017:\left(\dfrac{1}{1}-\dfrac{1}{2018}\right)\)
\(A=2017:\left(\dfrac{2018}{2018}-\dfrac{1}{2018}\right)\)
\(A=2017:\dfrac{2017}{2018}\)
\(A=2018.\)
Trước tiên, chúng ta cần có lý thuyết về biến đổi phân số.
\(\dfrac{b-a}{a\cdot b}=\dfrac{1}{a}-\dfrac{1}{b}\)
Ta có:
\(S=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2017\cdot2018}\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)
\(S=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+...-\dfrac{1}{2018}\)
\(S=1-\dfrac{1}{2018}\)
\(S=\dfrac{2017}{2018}\)
=1/1.2+1/2.3+1/3.4+...1/2017.2018
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2017-1/2018
=1-1/2018
=2018/2018-1/2018
=2017/2018
Ta có :
\(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{2}{2}+\frac{2\left(2+1\right)}{2}+\frac{3\left(3+1\right)}{2}+...+\frac{2017\left(2017+1\right)}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{\frac{1.2+2.3+3.4+...+2017.2018}{2}}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{1.2+2.3+3.4+...+2017.2018}{2}.\frac{1}{1.2+2.3+3.4+...+2017.2018}\)
\(A=\frac{1}{2}\)
Vậy \(A=\frac{1}{2}\)
Chúc bạn học tốt ~
a) = 1-1/2+1/2-1/3+1/3-1/4
= 1-1/4=3/4
b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018
=1-1/2018=2017/2018
c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015
= 1/2-1/2015=2015/4030-2/4030=2013/4030
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)
b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)
\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)
\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}.\frac{2013}{4030}\)
\(=\frac{6039}{8060}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}+\frac{1}{2018.2019}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\)
( gạch bỏ các phân số giống nhau)
\(S=1-\frac{1}{2019}\)
\(S=\frac{2018}{2019}\)
CHÚC BN HỌC TỐT!!!!
S=1/1.2+1/2.3+1/3.4+............1/2017.2018+1/2018.2019
S=1/2.(1+1/3.2+1/3.2+.............1/2017.1009+1/1009.2019)
S=1/4.(2+2/3.2+2/3.2+..............2/2017.1009+2/1009.2019)
S=1/4.(1-1/2+1/2-1/3+1/3+..........+1/1009-1/1009+1/2019)
S=1/4.(1-1/2019)
S=1/4.2018/2019=1009/4038
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2017\cdot2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
b) \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)( sửa 91.99 thành 97.99 mới đúng nha )
\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{97}-\frac{2}{99}\right)\)
\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{99}\right)\)
\(=\frac{1}{2}.\frac{64}{99}\)
\(=\frac{32}{99}\)
a) 1/1.2 + 1/2.3 + 1/3.4 +...+1/2017.2018
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ....+1/2017 - 1/2018
= 1 - 1/2018
= 2017/2018
a) \(A=\frac{1}{5}-\frac{1}{5^2}+\frac{1}{5^3}-\frac{1}{5^4}+...+\frac{1}{5^{99}}-\frac{1}{5^{100}}\)
\(\Rightarrow5A=1-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{98}}-\frac{1}{5^{99}}\)
\(\Rightarrow5A+A=1-\frac{1}{5^{100}}\)
\(A=\frac{1-\frac{1}{5^{100}}}{6}\)
b) B = 1.2+2.3+3.4+...+2017.2018
=>3B=1.2.3 + 2.3.3+3.4.3+...+2017.2018.3
3B = 1.2.3 + 2.3.(4-1) +3.4.(5-2) +...+2017.2018.(2019-2016)
3B = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2017.2018.2019-2016.2017.2018
3B = 2017.2018.2019
\(B=\frac{2017.2018.2019}{3}\)
3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2017.2018.3
3B = 1.2.3 + 2.3.(4-1) + 3.4.(5-2)+...+ 2017.2018(2019-2016)
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2017.2018.2019 - 2016.2017.2018
3B = 2017.2018.2019
B = 2017.2018.2019/3
B= 2739315938