Cho a,b,c\(\ge0\).C/m
a,(a+b)(b+c)(c+a)\(\ge8abc\)
b,\(\left(a+b\right)^2\left(b+c\right)^2\ge4abc\left(a+b+c\right)\)
c,\(b+c\ge16abc\)(với a+b+c=1)
Các bạn ơi giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a\ge0\),\(b\ge0\),\(c\ge0\),áp dụng bđt Cauchy cho 3 số dương a,b,c ta có
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ac}\)
Nhân từng vế bđt trên =>đpcm
\(\text{có:}\frac{k}{n}+\frac{n}{k}\ge2\Leftrightarrow\frac{k}{n}-2+\frac{n}{k}\ge0\Leftrightarrow\frac{k}{n}-2\sqrt{\frac{k}{n}}.\sqrt{\frac{n}{k}}+\frac{n}{k}\ge0\Leftrightarrow\left(\sqrt{\frac{k}{n}}-\sqrt{\frac{n}{k}}\right)^2\ge0\forall k,n>0\)
\(\left(a+b\right).\left(b+c\right).\left(c+a\right)\ge8abc\)
\(\Leftrightarrow\left(ab+ac+b^2+bc\right).\left(a+c\right)\ge8abc\)
\(\Leftrightarrow a^2b+a^2c+ab^2+abc+abc+ac^2+b^2c+bc^2\ge8abc\)
\(\Leftrightarrow2+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\ge8\)
\(\Leftrightarrow2+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge8\)(luôn đúng với mọi a,b,c >=0)
*) ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Nhân vế với vế của các BĐT trên,ta được: \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn
Mik làm đc bài 2 thôi à
Giờ ra chơi, sân trường thật là nhộn nhịp. Các trò chơi đuợc diễn ra sôi nổi. Cũng như các bạn của mình. Hồng Thắm và Yến Nhi rủ nhau ra chơi nhảy dây dưới bóng mát của gốc cây phượng vĩ.- Oẳn tù tì, ra cái gì, ra cái này!- A! Mình thắng rồi, nhảy trước nhé! Hồng Thắm reo lên, rồi nhanh nhẹn cầm dây nhảy, mặt tươi như hoa. Ban đầu, bé nhảy chậm, dần dần nhanh hơn. Dáng người của Thắm thon thả, nhỏ nhắn. Đôi bàn tay bé trắng hồng, cầm chắc hai đầu dây quay đều. Hai bím tóc như hai đuôi gà đen mượt nhảy tót lên vai. Được một lúc dường như đã thấm mệt, Thắm nhảy chậm lại nhưng miệng vẫn mấp máy đếm. Bỗng “uỵch”, Thắm vấp dây, lỡ đà khụy xuống. Đến lượt Yến Nhi thoăn thoắt lướt qua vòng dây. Tiếng dây quất xuống đất đen đét, nghe đanh và gọn. Yến Nhi có khuôn mặt tròn trịa, hai má bầu bĩnh, làn da ngăm ngăm màu nâu, đôi mắt đen tròn, sáng long lanh như hai hạt thủy tinh và hàng mi dày cong cong.- Sáu mươi, sáu mốt…Yến Nhi đếm đều, mồ hôi lấm tấm, những sợi tóc bết vào trán như đường chì kẻ. Khuôn mặt bé hồng lên trong nắng, y như mặt trời tí hon trên cao. Ông Mặt Trời gật gù mỉm cười. Những luồng gió mát thổi tung hai bím tóc dài. Chợt một hồi trống giòn giã vang lên: “Tùng! Tùng! Tùng!”Hồng Thắm và Yến Nhi nhanh nhẹn vào lớp cùng các bạn. Ngoài sân, nắng và gió vẫn vui đùa thản nhiên như muốn tiếp tục cuộc chơi của hai bé đang bỏ dở
1 ) \(â+b\ge2\sqrt{ab}\)
Tương tự : \(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
Nhân vế theo vế của 3 bpt dc dpcm
Dấu = xảy ra khi a = b = c
2) Nhân 2 vế bpt vs abc
Cm như 1)
3) \(a+2\ge2\sqrt{2a}\)
\(b+8\ge2\sqrt{8b}\)
\(a+b\ge2\sqrt{ab}\)
Nhân vế theo vế của 3 bpt dc dpcm
Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=8\\a=b\end{matrix}\right.\) (vô lí)
nên k xảy ra đẳng thức
Có \(VT=ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)-\left(a^3+b^3+c^3\right)\)
BĐT cần chứng minh \(\Leftrightarrow ab\left(a+b\right)+ac\left(a+c\right)+bc\left(b+c\right)\le a^3+b^3+c^3+3abc\)
Áp dụng bđt AM-GM có: \(\left(a+b-c\right)\left(a-b+c\right)\le\left[\dfrac{a+b-c+a-b+c}{2}\right]^2=a^2\)
Tương tự cũng có: \(\left(a-b+c\right)\left(b+c-a\right)\le c^2\); \(\left(a+b-c\right)\left(b+c-a\right)\le b^2\)
Nhân vế với vế\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(c+b-a\right)\le abc\) (lđ)
\(\Leftrightarrow3abc+a^3+b^3+c^3\ge ac\left(a+c\right)+ab\left(a+b\right)+bc\left(b+c\right)\) (BĐT cần chứng minh)
Dấu bằng xảy ra khi a=b=c