Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khôi Bùi Mysterious Person DƯƠNG PHAN KHÁNH DƯƠNG JakiNatsumi
*) ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Nhân vế với vế của các BĐT trên,ta được: \(\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\((a+b)+(b+c)+(c+a)\geq 3\sqrt[3]{(a+b)(b+c)(c+a)}\)
\(\Leftrightarrow 2(a+b+c)\geq 3\sqrt[3]{(a+b)(b+c)(c+a)}\)
\(\Rightarrow a+b+c\ge \frac{3}{2}\sqrt[3]{(a+b)(b+c)(c+a)}\)
Ta có đpcm.
Dấu "=" xảy ra khi $a+b=b+c=c+a$ hay $a=b=c$
Não đặc-.-
Nếu sửa đề ntn thì mk nghĩ không ngược dấu mới làm được nek
Bài 1: CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) với a,b,c dương
Bài làm:
Ta có: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\ge\frac{a^2+b^2+c^2}{\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}}-\frac{8abc}{2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}}\)
\(=\frac{a^2+b^2+c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}-\frac{8abc}{8abc}\)
\(=1-1=0\)
Dấu "=" xảy ra khi: \(a=b=c\)
Vãi bạn, mình đang đưa các bài tập về các bđt ngược chiều nên đề như thế là đúng r
a) (a+b)(b+c)(c+a)\(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=\)8abc(co si 2 so)
b)(a+b+c)(a^2+b^2+c^2)\(\ge\left(a+b+c\right)\left(ab+bc+ac\right)\)
\(\ge3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)(cosi 3 so)