K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)\(\frac{\left(6-2x\right)\left(\sqrt{5+x}\right)}{\left(\sqrt{5+x}\right)\left(\sqrt{5-x}\right)}-\frac{\left(6+2x\right)\left(\sqrt{5-x}\right)}{\left(\sqrt{5+x}\right)\left(\sqrt{5-x}\right)}=\frac{8\left(\sqrt{5+x}\right)\left(\sqrt{5-x}\right)}{3\left(\sqrt{5+x}\right)\left(\sqrt{5-x}\right)}\)

\(3\left(6-2x\right)\left(\sqrt{5+x}\right)-3\left(6+2x\right)\left(\sqrt{5-x}\right)=8\left(\sqrt{5+x}\right)\left(\sqrt{5-x}\right)\)

29 tháng 6 2020

ĐK: \(-5< x< 5\)

Đặt \(a=\sqrt{5+x};b=\sqrt{5-x}\left(a,b>0\right)\)

Khi đó ta có \(6-2x=2b^2-4;6+2x=2a^2-4\)

Khi đó ta có:

\(\frac{2b^2-4}{a}+\frac{2a^2-4}{b}=\frac{8}{3}\Leftrightarrow\left(2b^2-4\right)a+\left(2a^2-4\right)b=\frac{8}{3}ab\)

\(\Leftrightarrow2ab\left(a+b\right)-4\left(a+b\right)=\frac{8}{3}ab\)

Từ đó ta có hệ phương trình

\(\hept{\begin{cases}2ab\left(a+b\right)-4\left(a+b\right)=\frac{8}{3}ab\\a^2+b^2=10\end{cases}\Leftrightarrow\hept{\begin{cases}2ab\left(a+b\right)-4\left(a+b\right)=\frac{8}{3}ab\\\left(a+b\right)^2-2ab=10\end{cases}}}\)

Đặt S=a+b; P=ab (\(S\ge\sqrt{10}\))

Hệ phương trình trở thành

\(\hept{\begin{cases}2SP-4S=\frac{8}{3}P\left(1\right)\\S^2-2P=10\left(2\right)\end{cases}}\)

Từ phương trình (2) ta có \(P=\frac{S^2-10}{2}\)thế lên phương trình trên và rút gọn ta được \(6S^3-8S^2-84S+80=0\Leftrightarrow\left(S-4\right)\left(3S^2+8S-10\right)=0\Leftrightarrow S=4\left(tmđk\right)\)

\(3S^2+8S-10=0\left(VN\right)\)vì \(S>\sqrt{10}\)

S=4 \(\Rightarrow P=3\Leftrightarrow\sqrt{5+x}\sqrt{5-b}=3\Leftrightarrow25-x^2=9\Leftrightarrow x^2=16\Leftrightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}\left(tm\right)}\)

Vậy PT có 2 nghiệm là x=4; x=-4

22 tháng 8 2017

hk như lm rồi đấy

23 tháng 8 2017

1/ \(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)

\(\Leftrightarrow\frac{3-x}{\sqrt{5-x}}+\frac{3+x}{\sqrt{5+x}}=\frac{4}{3}\)

Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{5+x}=b\end{cases}}\) thì ta có:

\(\hept{\begin{cases}\frac{a^2-2}{a}+\frac{b^2-2}{b}=\frac{4}{3}\\a^2+b^2=10\end{cases}}\)

Tới đây thì đơn giản rồi nhé

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

9 tháng 9 2016

a)x=-0.25

b)x=2

20 tháng 10 2017

đến câu hỏi tương tự hình như có hay sao á

chúc may mắn
 

7 tháng 11 2017

:Ở bàn học lớp mấy vậy

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

2 tháng 9 2020

Bạn xem lại đề câu b và c nhé !

a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)

\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)

\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ

\(\Rightarrow x\ge2\) thỏa mãn đề.

d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)

\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)

Pt tương đương :

\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )

e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)

\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)

Phương trình (1) tương đương :

\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )

NV
27 tháng 10 2019

a/ ĐKXĐ: ...

\(\Leftrightarrow3\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)-7\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow a^2=x+\frac{1}{4x}+1\)

\(\Rightarrow x+\frac{1}{4x}=a^2-1\)

Pt trở thành:

\(3a=2\left(a^2-1\right)-7\)

\(\Leftrightarrow2a^2-3a-9=9\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=3\)

\(\Leftrightarrow2x-6\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{3+\sqrt{7}}{2}\Rightarrow x=\frac{8+3\sqrt{7}}{2}\)

b/ ĐKXĐ:

\(\Leftrightarrow5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=a>0\Rightarrow x+\frac{1}{4x}=a^2-1\)

\(\Rightarrow5a=2\left(a^2-1\right)+4\Leftrightarrow2a^2-5a+2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x}+\frac{1}{2\sqrt{x}}=2\\\sqrt{x}+\frac{1}{2\sqrt{x}}=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-4\sqrt{x}+1=0\\2x-\sqrt{x}+1=0\left(vn\right)\end{matrix}\right.\)

NV
27 tháng 10 2019

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\frac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\frac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\frac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

d/ ĐKXĐ: ...

\(\Leftrightarrow x+1-\frac{15}{6}\sqrt{x}+\sqrt{x^2-4x+1}-\frac{1}{2}\sqrt{x}=0\)

\(\Leftrightarrow\frac{x^2-\frac{17}{4}x+1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{x^2-\frac{17}{4}x+1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}=0\)

\(\Leftrightarrow\left(x^2-\frac{17}{4}x+1\right)\left(\frac{1}{\left(x+1\right)^2+\frac{15}{6}\sqrt{x}}+\frac{1}{\sqrt{x^2-4x+1}+\frac{1}{2}\sqrt{x}}\right)=0\)

\(\Leftrightarrow x^2-\frac{17}{4}x+1=0\)

\(\Leftrightarrow4x^2-17x+4=0\)