K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

Mik ko thấy hình

6 tháng 10

*Kẻ Bylà tia đối ca tia By => ABy kề bù với ABy
=> ABy + ABy= 180
=> 120 + ABy
= 180

=> ABy= 60
Ta có mAx = 60 =ABy
, mà mAx và ABy’ ở vtrí đồng v=> Ax // By (1)

*Ta có yBC + CBA + ABy = 360
=> yBC + 90 + 120 = 360
=> yBC = 150
Ta có BCz = 150 = yBC, mà 2 góc này
ở vtrí so le trong => By // Cz (2)

Từ (1), (2) => đpcm

15 tháng 6 2018

a) Ta có tAx ^ + xAB ^ = 180 ∘  (hai góc kề bù) mà  tAx ^ = 60 ∘

⇒ xAB ^ = 180 ∘ − 60 ∘ = 120 ∘

Mặt khác  ABy ^ = 120 ∘

⇒ xAB ^ = ABy ^  mà hai góc này ở vị trí so le trong

⇒ Ax // By

b)

Kẻ tia By' là tia đối của tia By

Ta có:  ABy ^ + ABy' ^ = 180 ∘  (hai góc kề bù) mà  ABy ^ = 120 ∘

⇒ ABy' ^ = 180 ∘ − 120 ∘ = 60 ∘

Mặt khác ABC ^ = 90 ∘  hay ABy' ^ + y'BC ^ = 90 ∘

⇒ y'BC ^ = 90 ∘ − 60 ∘ = 30 ∘

Ta có y'BC ^ + CBy ^ = 180 ∘ (hai góc kề bù)

⇒ CBy ^ = 180 ∘ − 30 ∘ = 150 ∘

Ta lại có  BCz ^ = 150 ∘

⇒ BCz ^ = CBy ^  mà hai góc này ở vị trí so le trong

⇒ By // Cz

29 tháng 7 2023

Giúp tui với mn ơi cần gấp lắm ròi :<

Bạn cho hình vẽ đi bạn

20 tháng 8

bạn gửi hình kiểu gì vậy

 

 

20 tháng 8

hình vẽ sai rồi bạn ơi

 

31 tháng 8 2021

ABC=80* đấy 

8 tháng 7 2016

Áp dụng bất đẳng thức Bunhiacopxki, ta được : \(\left(a+b+c\right)\left(x+y+z\right)\ge\left(ax+by+cz\right)^2=\left(3ax\right)^2=30^2=90\)

\(\Rightarrow\left(a+b+c\right)\left(x+y+z\right)\ge90\)

8 tháng 7 2016

Xin lỗi bạn nhé ^^

Tại vội quá nên mình nhìn lộn. Phải là 900 mới đúng.

Nhưng như vậy thì có thể đề bài chưa đúng.

25 tháng 11 2018

Ta có \(ax^3=by^3=cz^3\Leftrightarrow\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=ax^2+by^2+cz^2\Leftrightarrow\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}=\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}+\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}+\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)Vậy \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)