K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

Ta có: \(a^4+1\ge a\left(a^2+1\right)\)\(\Leftrightarrow a^4+1\ge a^3+a\)

\(\Leftrightarrow a^4-a^3+1-a\ge0\)

\(\Leftrightarrow a^3\left(a-1\right)-\left(a-1\right)\ge0\)

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a+1\right)\ge0\)

mà \(a^2+a+1=a^2+2a\frac{1}{2}+\frac{1}{4}+1-\frac{1}{4}\)\(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\frac{3}{4}>0\right)\)

Vì \(\left(a+\frac{1}{2}\right)^2\ge0\)với mọi a ( Đó là điều hiển nhiên )

Vậy...................

Bài làm chỉ mang tính chất tượng trưng còn sai sót

NV
13 tháng 4 2019

Biến đổi tương đương:

\(a^4+1\ge a^3+a\Leftrightarrow a^4-a^3-a+1\ge0\)

\(\Leftrightarrow a^3\left(a-1\right)-\left(a-1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(a^3-1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(a-1\right)\left(a^2+a+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left[\left(a+\frac{1}{4}\right)^2+\frac{3}{4}\right]\ge0\) (luôn đúng)

Vậy BĐT ban đầu đúng, dấu "=" xảy ra khi \(a=1\)

10 tháng 3 2021

Biến đổi \(4\left(a^3+b^3\right)-\left(a+b\right)^3=3a^3-3a^2b-3ab^2+3b^3=3a^2\left(a-b\right)-3b^2\left(a-b\right)=\left(3a^2-3b^2\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)^2\ge0\forall a,b>0\).

Từ đó ta có \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

10 tháng 3 2021

Với a, b>0 các bn nha

15 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

15 tháng 1 2021

bạn trình bày rõ ra vì sao lại có suy ra thứ 2 vậy. Giải thik cho mk đc ko Sigma CTV

14 tháng 1 2018

Làm thông thường thoy; khai triển ra xog chuyển vế

\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)

\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)

\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))

Vậy bđt đã đc chứng minh

14 tháng 1 2018

cảm ơn nhiều nha. chúng ta kết bạn được không?

7 tháng 12 2021

Áp dụng BĐT cosi:

\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)

Dấu \("="\Leftrightarrow a=b=c\)

 

\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-a^2b-b^3>=0\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b>=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)>=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2>=0\)(luôn đúng)

29 tháng 1 2019

Sửa đề: a,b,c,d>0

C/m: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(c+d\right)\)

Áp dụng BĐT AM-GM ta có:

\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left[\frac{\left(a+c\right)+\left(b+d\right)}{2}\right]^2\ge\left[\frac{2.\sqrt{\left(a+c\right)\left(b+d\right)}}{2}\right]^2=\left(a+c\right)\left(b+d\right)\)

Dấu " = " xảy ra <=> a+c=b+d