So sánh ( 1 + 2 + 22 + 23 + ....+ 29 ) và 5.28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+2^3+...+2^9\)
Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)
\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\)
Vậy \(S< 5.2^8\)
\(#Tuyết\)
2S=2+2^2+...+2^10
=>S=2^10-1=1023
5*2^8=256*5=1280
=>S<5*2^8
Ta lấy ps trung gian: 23/29
So sánh : 23/27>23/29>22/29.
=> 23/27>22/29
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
HT
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
a) Ta có \(\dfrac{23}{27}>\dfrac{23}{29};\dfrac{23}{29}>\dfrac{22}{29}\)
Vậy \(\dfrac{23}{27}>\dfrac{22}{29}\)
b) Ta có \(\dfrac{15}{25}=1-\dfrac{2}{5}\)
\(\dfrac{25}{49}=1-\dfrac{24}{49}\)
Vì \(\dfrac{2}{5}=\dfrac{24}{60}< \dfrac{24}{49}\)
Vậy \(\dfrac{15}{25}>\dfrac{25}{49}\)
a) Ta có: \(\frac{-13}{38}\)> \(\frac{-13}{88}\)(hai phân số cùng tử)
Lại có \(\frac{-13}{88}\)> \(\frac{-29}{88}\)(hai phân số cùng mẫu)
Suy ra: \(\frac{-13}{38}>\frac{-29}{88}\)
b) Tương tự, ta có \(\frac{22}{29}< \frac{22}{27}< \frac{24}{27}\)
\(\Rightarrow\frac{22}{29}< \frac{24}{27}\)
c)Tương tự, ta có: \(\frac{23}{29}< \frac{23}{27}< \frac{24}{27}\)
\(\Rightarrow\frac{23}{29}< \frac{24}{27}\)
d) Tương tự, ta có: \(\frac{-13}{91}>\frac{-13}{202}>\frac{-29}{202}\)
\(\Rightarrow\frac{-13}{92}>\frac{-29}{202}\)
Ps: Mình làm theo cách so sánh thông qua phân số trung gian, rất mong được tham khảo cách khác nhanh hơn!!!
Ta có A = \(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
= \(\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}+\dfrac{1}{10\cdot11}+\dfrac{1}{11\cdot12}\)
= \(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\)
= \(\dfrac{1}{6}-\dfrac{1}{12}=\dfrac{1}{12}\)
B = \(\dfrac{\dfrac{2}{29}-\dfrac{2}{39}+\dfrac{2}{49}}{\dfrac{23}{29}-\dfrac{23}{39}+\dfrac{23}{49}}=\dfrac{2\left(\dfrac{1}{29}-\dfrac{1}{39}+\dfrac{1}{49}\right)}{23\left(\dfrac{1}{29}-\dfrac{1}{39}+\dfrac{1}{49}\right)}=\dfrac{2}{23}\)
Lại có \(\dfrac{2}{23}>\dfrac{2}{24}=\dfrac{1}{12}\) hay A < B
Vậy A < B
a) Có : 23/27>22/27
Mà 22/27>22/29
=> 23/27>22/29
b) Có : 12/25=24/50
24/50<24/49;24/49<25/49
=> 12/25<25/49
a,23/27>23/29
22/29<23/29
=>22/29<23/29<23/27
=>22/29<23/27
kl:....(kết luận)
Số số hạng của tổng A là : \(\dfrac{30-21}{1}+1=10\left(sh\right)\)
`=>A=\underbrace{1/21+1/22+...+1/30}_{10sh}>\underbrace{1/30+1/30+1/30+...+1/30}_{10sh}`
`=>A>(1)/(30).10`
`=>A>10/30`
`=>A>1/3`
`=>đpcm`
Đặt A = 1 + 2 +22 + ... + 29
A . 2 = 2 + 22 + 23 +... + 210
A . 2 - A = ( 2 + 22 + 23 + ... + 210 ) - ( 1 + 2 +22 + ... + 29 )
A = 210 - 1
A = 1023
5. 28 = 1280
Mà 1280 > 1023
Vậy ( 1 + 2 + 22 +... +29 ) < 5 . 28
****