K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

Bạn đặt phép chia dọc ra . 

Ta có :

\(x^4+ax^2+bx+c\div\left(x-3\right)^3\)

Ta được thương là : \(x+9\)

và dư là \(ax^2+54x^2+bx-216x+243+c\)

Muốn \(x^4+ax^2+bx+c⋮\left(x-3\right)^3\)

thì \(ax^2+54x^2+bx-216x-+243c=0\)

\(\Rightarrow x^2\left(a+54\right)+x\left(b-216\right)+243+c=0\forall x\)

\(\Leftrightarrow\hept{\begin{cases}a+54=0\\b-216=0\\243+c=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=-54\\b=216\\c=-243\end{cases}}\)

21 tháng 7 2017

bài 2:

\(A=\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)

\(=\left(c+b+a-2c\right)^3+\left(c+a+b-2b\right)^3\)

\(=\left(-2c\right)^3+\left(-2b\right)^3=-8\left(b+c\right)\)

sao nữa nhỉ :v

22 tháng 7 2017

rồi sao nua

24 tháng 11 2022

a: \(\dfrac{2x^3-x^2+ax+b}{x^2-1}\)

\(=\dfrac{2x^3-2x-x^2+1+\left(a+2\right)x+b-1}{x^2-1}\)

\(=2x-1+\dfrac{\left(a+2\right)x+b-1}{x^2-1}\)

Để đây là phép chia hết thì a+2=0 và b-1=0

=>a=-2; b=1

b: \(\Leftrightarrow x^4-1+ax^2-a+bx+a⋮x^2-1\)

=>bx+a=0

=>a=b=0

27 tháng 11 2017

a) Giả sử phép chia có thương là : q(x)

Khi đó , ta có : ax3 + bx - 24 = ( x + 1)( x + 3)q(x) , với mọi x ( 1)

Chọn các giá trị riêng của x sao cho :

( x + 1)( x + 3) = 0

Suy ra : x = -1 hoặc x = - 3

* Với x = -1 thì :

( 1) <=> -a -b - 24 = 0

<=> -( a + b) = 24

<=>a + b = -24 ( 2)

* Với x = -3 , thì :

( 1) <=> - 27a - 3b - 24 = 0

<=> -( 27a + 3b) = 24

<=> 27a + 3b = - 24 ( 3)

Từ ( 2 ; 3) suy ra a = 2 ; b = - 26

Vậy , ....

b) Do đa thức chia có bậc 4 ,đa thức bị chia có bậc 2 suy ra thương có bậc 2

Giả sử thương là : cx2 + dx + e

Ta có : x4 + ax2 + b = ( x2 + x + 1)( cx2 + dx + e)

x4 + ax2 + b = cx4 + dx3 + ex2 + cx3 + dx2 + ex + cx2 + dx + e

x4 + ax2 + b = cx4 + x3( d + c) + x2(e + d + c) + x( e + d) + e

Đồng nhất hệ số , ta có :

* c = 1

* d + c = 0 --> d + 1 = 0 --> d = -1

* e + d + c = a --> a = 1 - 1 + 1 = 1

* e + d = 0 e - 1 = 0 --> e = 1

* e = b --> b = 1

Vậy , a = 1 ; b = 1 thỏa mãn điều kiện đề bài

22 tháng 10 2021

\(a,\Leftrightarrow2x^3-x^2+ax+b=\left(x-1\right)\left(x+1\right)\cdot a\left(x\right)\)

Thay \(x=1\Leftrightarrow2-1+a+b=0\Leftrightarrow a+b=-1\)

Thay \(x=-1\Leftrightarrow-2-1-a+b=0\Leftrightarrow b-a=3\)

Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\-a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1\end{matrix}\right.\)

\(b,\Leftrightarrow ax^3+bx^2+2x-1=\left(x-1\right)\left(x+6\right)\cdot b\left(x\right)\)

Thay \(x=1\Leftrightarrow a+b+2-1=0\Leftrightarrow a+b=-1\)

Thay \(x=-6\Leftrightarrow-216a+36b+12-1=0\Leftrightarrow216a-36b=11\)

Từ đó ta được \(\left\{{}\begin{matrix}a+b=-1\\216a-36b=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{25}{252}\\b=-\dfrac{227}{252}\end{matrix}\right.\)

\(c,\Leftrightarrow ax^4+bx^3+1=\left(x+1\right)^2\cdot c\left(x\right)\)

Thay \(x=-1\Leftrightarrow a-b+1=0\Leftrightarrow b=a+1\)

\(\Leftrightarrow ax^4+\left(a+1\right)x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^4+ax^3+x^3+1⋮\left(x+1\right)\\ \Leftrightarrow ax^3\left(x+1\right)+\left(x+1\right)\left(x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(ax^3+x^2-x+1\right)⋮\left(x+1\right)\\ \Leftrightarrow ax^3+x^2-x+1⋮\left(x+1\right)\)

Thay \(x=-1\Leftrightarrow-a+1+1+1=0\Leftrightarrow a=3\Leftrightarrow b=4\)

2 tháng 3 2017

= 50

nho k minh nha\