a, 3x^2 - 4x + 1 < 0
b, 5x^2 + 12x - 17 ≥ 0
c, x^2 + 11x - 30 > 0
d, x^2 - 12x + 35 ≤ 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>(3x-1)(x-1)<0
=>1/3<x<1
b: =>\(5x^2+17x-5x-17>=0\)
=>(5x+17)(x-1)>=0
=>x>=1 hoặc x<=-17/5
a) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)
b) Ta có: \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: S={2;3}
c) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: S={1;2}
d) Ta có: \(2x^2-6x+1=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)
mà \(2\ne0\)
nên \(x^2-3x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)
e) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)
bạn phải phân tích đa thức thành nhân tử để hạ bậc. Một mẹo mình mách bạn thế này . bạn tìm một giá trị của x thỏa mãn thì dựa vào đó đó phân tich. Thông thường giá trị đó là ước của hằng số trong vế trái ví dụ câu a bạn thay ước của 12. mình thấy -1 thỏa mãn vậy khi phân tích đa thức thành nhân tử chắc chắn sẽ xuất hiện nhân tử là x+1 và dựa vào đó mình phân tích như sau:
x3-6x2+5x+12=0
<=> x3+x2-7x2-7x+12x+12=0
<=> (x3+x2)-(7x2+7x)+(12x+12)=0
<=> x2(x+1)-7x(x+1)+12(x+1)=0
<=> (x+1)(x2-7x+12)=0
Phân tích tiếp nhóm x2-7x+12 = x2-3x-4x+12 = x(x-3)-4(x-3) = (x-3)(x-4)
vậy phương trình tương đương
<=> (x+1)(x-3)(x-4) = 0
đến đây dễ dàng suy ra x = -1; 3; 4
Các câu còn lại tương tự bạn tự làm vì quá nhiều mình không gõ được
\(2x\left(x-17\right)+\left(17-x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-17\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=17\end{cases}}\)
a) 5x +3=2x-8 <=>5x-2x=-8-3 <=>3x=-11 <=> x=\(\dfrac{-11}{3}\)
b)6x-3(x+2)=5x+3<=> (6-3-5)x-9=0 <=> x=\(\dfrac{-9}{2}\)
c) (3x-9)(5x+10)=0<=> \(\left[{}\begin{matrix}3x-9=0\\5x+10=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d)8x(x+2)+16(x+2)=0<=>(x+2)(8x+16)=0<=>\(\left[{}\begin{matrix}x=-2\\x=-2\end{matrix}\right.\)
e)x2 -12x+35=0 <=>\(\left[{}\begin{matrix}x=7\\x=5\end{matrix}\right.\)
a: \(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)
\(\Leftrightarrow12x^2+15x^2-18=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
=>x=-6 hoặc x=1
b: \(x^4+3x^2-4=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
a: =>(3x-1)(x-1)<0
=>1/3<x<1
b: =>\(5x^2+17x-5x-17>=0\)
=>(5x+17)(x-1)>=0
=>x>=1 hoặc x<=-17/5
d: =>(x-5)(x-7)<=0
=>5<=x<=7