Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>(3x-1)(x-1)<0
=>1/3<x<1
b: =>\(5x^2+17x-5x-17>=0\)
=>(5x+17)(x-1)>=0
=>x>=1 hoặc x<=-17/5
a.
$x^2-11=0$
$\Leftrightarrow x^2=11$
$\Leftrightarrow x=\pm \sqrt{11}$
b. $x^2-12x+52=0$
$\Leftrightarrow (x^2-12x+36)+16=0$
$\Leftrightarrow (x-6)^2=-16< 0$ (vô lý)
Vậy pt vô nghiệm.
c.
$x^2-3x-28=0$
$\Leftrightarrow x^2+4x-7x-28=0$
$\Leftrightarrow x(x+4)-7(x+4)=0$
$\Leftrightarrow (x+4)(x-7)=0$
$\Leftrightarrow x+4=0$ hoặc $x-7=0$
$\Leftrightarrow x=-4$ hoặc $x=7$
d.
$x^2-11x+38=0$
$\Leftrightarrow (x^2-11x+5,5^2)+7,75=0$
$\Leftrightarrow (x-5,5)^2=-7,75< 0$ (vô lý)
Vậy pt vô nghiệm
e.
$6x^2+71x+175=0$
$\Leftrightarrow 6x^2+21x+50x+175=0$
$\Leftrightarrow 3x(2x+7)+25(2x+7)=0$
$\Leftrightarrow (3x+25)(2x+7)=0$
$\Leftrightarrow 3x+25=0$ hoặc $2x+7=0$
$\Leftrightarrow x=-\frac{25}{3}$ hoặc $x=-\frac{7}{2}$
a/ \(\left(x-2\right)^2=11+6\sqrt{2}\)
\(\Leftrightarrow\left(x-2\right)^2=\left(3+\sqrt{2}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3+\sqrt{2}\\x-2=-3-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5+\sqrt{2}\\x=-1-\sqrt{2}\end{matrix}\right.\)
b/ \(x^2-10x+25=27-10\sqrt{2}\)
\(\Leftrightarrow\left(x-5\right)^2=\left(5-\sqrt{2}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=5-\sqrt{2}\\x-5=\sqrt{2}-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\)
c/ \(4x^2+4x+1=28-10\sqrt{3}\)
\(\Leftrightarrow\left(2x+1\right)^2=\left(5-\sqrt{3}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5-\sqrt{3}\\2x+1=\sqrt{3}-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4-\sqrt{3}}{2}\\x=\frac{-6+\sqrt{3}}{2}\end{matrix}\right.\)
d/ \(x^2+2\sqrt{5}x+5=21-4\sqrt{5}\)
\(\Leftrightarrow\left(x+\sqrt{5}\right)^2=\left(2\sqrt{5}-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{5}=2\sqrt{5}-1\\x+\sqrt{5}=1-2\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}-1\\x=1-3\sqrt{5}\end{matrix}\right.\)
e/ \(x^2+2\sqrt{12}x+12=13-4\sqrt{3}\)
\(\Leftrightarrow\left(x+2\sqrt{3}\right)^2=\left(2\sqrt{3}-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2\sqrt{3}=2\sqrt{3}-1\\x+2\sqrt{3}=1-2\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1-4\sqrt{3}\end{matrix}\right.\)
f/ \(4x^2-12\sqrt{2}x+18=51-10\sqrt{2}\)
\(\Leftrightarrow\left(2x-3\sqrt{2}\right)^2=\left(5\sqrt{2}-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5\sqrt{2}=5\sqrt{2}-1\\2x-2\sqrt{2}=1-5\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{10\sqrt{2}-1}{2}\\x=\frac{1-3\sqrt{2}}{2}\end{matrix}\right.\)
a: =>(3x-1)(x-1)<0
=>1/3<x<1
b: =>\(5x^2+17x-5x-17>=0\)
=>(5x+17)(x-1)>=0
=>x>=1 hoặc x<=-17/5
d: =>(x-5)(x-7)<=0
=>5<=x<=7