cho a,b là 2 số dương thỏa mãn a2+b2=6
cmr \(\sqrt{3\left(a^2+6\right)}\ge\left(a+b\right)\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b là 2 số dương thỏa mãn a2+b2=6
cmr \(\sqrt{3\left(a^2+6\right)}\ge\left(a+b\right)\sqrt{2}\)
Bình phương 2 vế ta được
3a2 + 18 - 2a2 - 4ab - 2b2 \(\ge\)0
<=> a2 - 2b2 - 4ab + 3( a2 + b2) \(\ge0\)
<=> 4a2 - 4ab + b2 \(\ge0\)
<=> (2a - b)2 \(\ge0\)(đúng)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)
Từ ( 1 ) và ( 2 ) có đpcm
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$
$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$
$\Rightarrow C^2\leq 32.4$
$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$
Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Đây nha! Vô tcn xem ảnh!
Lời giải:
Từ ĐKĐB kết hợp BĐT Bunhiacopxky:
\(3(a^2+6)=3(a^2+a^2+b^2)=(1+2)(2a^2+b^2)\geq (\sqrt{2}a+\sqrt{2}b)^2\)
\(\Rightarrow \sqrt{3(a^2+6)}\geq \sqrt{2}(a+b)\) (đpcm)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} a,b>0\\ a^2+b^2=6\\ \frac{1}{\sqrt{2}a}=\frac{\sqrt{2}}{b}\end{matrix}\right.\) hay $a=\sqrt{\frac{6}{5}}; b=2\sqrt{\frac{6}{5}}$