cho a,b,c,d thỏa mãn a^2=b^2+c^2+d^2 chứng minh a.b.c.d +2015 được viết dưới dạng hiệu 2 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)
<=> \(1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
<=>\(\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
<=>\(b.\frac{b+c-a-b}{\left(a+b\right)\left(b+c\right)}+d.\frac{d+a-c-d}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}-\frac{d\left(c-a\right)}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\left(c-a\right).\frac{b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)}=0\)
<=> \(\orbr{\begin{cases}c-a=0\\b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\end{cases}}\)
<=>\(\orbr{\begin{cases}c=a\left(KTM\right)\\abc-acd+bd^2-b^2d=0\end{cases}}\)
<=>\(\left(b-d\right)\left(ac-bd\right)=0< =>\orbr{\begin{cases}b-d=0\\ac-bd=0\end{cases}< =>\orbr{\begin{cases}b=d\left(KTM\right)\\ac=bd\end{cases}}}\)
=> \(abcd=\left(ac\right)^2\) => \(abcd\)là số chính phương ( ĐPCM)
----Tk mình nha----
~~Hk tốt~~
\(A=\left(1+b^2+a^2+a^2b^2\right).\left(1+c^2\right)\)
\(=1+a^2+b^2+c^2+a^2c^2+b^2c^2+a^2b^2+a^2b^2c^2\)
\(=1+\left(a+b+c\right)^2-2.\left(ab+bc+ac\right)+\left(ab+bc+ac\right)^2-2abc.\left(a+b+c\right)+a^2b^2c^2\)
Thay ab+bc+ac=1 vào A, ta có:
\(A=1+\left(a+b+c\right)^2-2+1-2abc.\left(a+b+c\right)+a^2b^2c^2\)
\(=\left(a+b+c\right)^2-2abc.\left(a+b+c\right)+a^2b^2c^2\)
\(=\left(a+b+c-abc\right)^2\)
Vì a,b,c thuộc Z
\(\Rightarrow\left(a+b+c-abc\right)^2\)là số chính phương
\(\hept{\begin{cases}\left(1+a^2\right)=\left(ab+bc+ca+a^2\right)=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(a+c\right)\\\left(1+b^2\right)=\left(ab+bc+ca+b^2\right)=a\left(b+c\right)+b\left(b+c\right)=\left(a+b\right)\left(b+c\right)\\\left(1+c^2\right)=\left(ab+bc+ca+c^2\right)=a\left(b+c\right)+c\left(b+c\right)=\left(a+c\right)\left(b+c\right)\end{cases}}\)
\(\Rightarrow A=\text{[}\left(a+b\right)\left(b+c\right)\left(c+a\right)\text{]}^2\Rightarrow\text{đ}pcm\)