Cho x + y = 2.CMR : xy <= 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1. Ta có : \(xy+\dfrac{1}{xy}=16xy-15xy+\dfrac{1}{xy}\)
Áp dụng BĐT Cauchy cho các số dương , ta có :
\(x+y\) ≥ \(2\sqrt{xy}\)
⇔ \(\left(x+y\right)^2\) ≥ \(4xy\)
⇔ \(\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\) ≥ xy
⇔ - 15xy ≥ \(\dfrac{1}{4}.\left(-15\right)=\dfrac{-15}{4}\)
CMTT , \(16xy+\dfrac{1}{xy}\) ≥ \(2\sqrt{16xy.\dfrac{1}{xy}}=2.\sqrt{16}=8\)
⇒ \(16xy+\dfrac{1}{xy}\) - 15xy ≥ \(8-\dfrac{15}{4}=\dfrac{17}{4}\)
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) được
\(VT\ge\frac{4}{\left(x+y\right)^2}\ge4\)
Dấu "=" xảy ra khi x = y = 1/2
Vậy ...........
Cũng ko hẳn là cách khác nhưng xem cho vui v :)
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}=\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}\ge\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)
\(x+y=2\)
\(\Rightarrow x=2-y\)
Theo đế bài , ta có:
\(x.y=\left(2-y\right)y=2y-y^2\)
\(=-\left(y^2-2y\right)=-\left(y^2-2y+1-1\right)=-\left[\left(y-1\right)^2-1\right]=-\left(y-1\right)^2+1\)
Vì \(\left(y-1\right)^2\ge0\left(y\in R\right)\)
nên \(-\left(y-1\right)^2\le0\left(y\in R\right)\)
do đó \(-\left(y-1\right)^2+1\le1\left(y\in R\right)\)
Hay \(x.y\le1\left(đpcm\right)\)