Nếu n \(\in\)N sao cho \(\hept{\begin{cases}2n+1=a^2\\3n+1=b^2\end{cases}}\left(a,b\in Z\right)\)
Chứng minh \(n⋮40\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b⋮7\Rightarrow a⋮6,b⋮7\)
\(\Rightarrow4a⋮7;3b⋮7\)
\(\Rightarrow4a+3b⋮7\) (đpcm)
a.
\(\Leftrightarrow na_{n+2}-na_{n+1}=2\left(n+1\right)a_{n+1}-2\left(n+1\right)a_n\)
\(\Leftrightarrow\dfrac{a_{n+2}-a_{n+1}}{n+1}=2.\dfrac{a_{n+1}-a_n}{n}\)
Đặt \(b_n=\dfrac{a_{n+1}-a_n}{n}\Rightarrow\left\{{}\begin{matrix}b_1=\dfrac{a_2-a_1}{1}=1\\b_{n+1}=2b_n\end{matrix}\right.\) \(\Rightarrow b_n=2^{n-1}\Rightarrow a_{n+1}-a_n=n.2^{n-1}\)
\(\Leftrightarrow a_{n+1}-\left[\dfrac{1}{2}\left(n+1\right)-1\right]2^{n+1}=a_n-\left[\dfrac{1}{2}n-1\right]2^n\)
Đặt \(c_n=a_n-\left[\dfrac{1}{2}n-1\right]2^n\Rightarrow\left\{{}\begin{matrix}c_1=a_1-\left[\dfrac{1}{2}-1\right]2^1=2\\c_{n+1}=c_n=...=c_1=2\end{matrix}\right.\)
\(\Rightarrow a_n=\left[\dfrac{1}{2}n-1\right]2^n+2=\left(n-2\right)2^{n-1}+2\)
b.
Câu b này đề sai
Với \(n=1\Rightarrow\sqrt{a_1-1}=0< \dfrac{1\left(1+1\right)}{2}\)
Với \(n=2\Rightarrow\sqrt{a_1-1}+\sqrt{a_2-1}=0+1< \dfrac{2\left(2+1\right)}{2}\)
Có lẽ đề đúng phải là: \(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}\ge\dfrac{n\left(n-1\right)}{2}\)
Ta sẽ chứng minh: \(\sqrt{a_n-1}\ge n-1\) ; \(\forall n\in Z^+\)
Hay: \(\sqrt{\left(n-2\right)2^{n-1}+1}\ge n-1\)
\(\Leftrightarrow\left(n-2\right)2^{n-1}+2n\ge n^2\)
- Với \(n=1\Rightarrow-1+2\ge1^2\) (đúng)
- Với \(n=2\Rightarrow0+4\ge2^2\) (đúng)
- Giả sử BĐT đúng với \(n=k\ge2\) hay \(\left(k-2\right)2^{k-1}+2k\ge k^2\)
Ta cần chứng minh: \(\left(k-1\right)2^k+2\left(k+1\right)\ge\left(k+1\right)^2\)
\(\Leftrightarrow\left(k-1\right)2^k+1\ge k^2\)
Thật vậy: \(\left(k-1\right)2^k+1=2\left(k-2\right)2^{k-1}+2^k+1\ge2k^2-4k+2^k+1\)
\(\ge2k^2-4k+5=k^2+\left(k-2\right)^2+1>k^2\) (đpcm)
Do đó:
\(\sqrt{a_1-1}+\sqrt{a_2-1}+...+\sqrt{a_n-1}>0+1+...+n-1=\dfrac{n\left(n-1\right)}{2}\)
1,
\(A=1+a+\frac{1}{b}+\frac{a}{b}+1+b+\frac{1}{a}+\frac{b}{a}\)
\(\ge1+1+2\sqrt{\frac{a}{b}.\frac{b}{a}}+a+b+\frac{a+b}{ab}=4+a+b+\frac{4\left(a+b\right)}{\left(a+b\right)^2}=4+a+b+\frac{4}{a+b}\)
lại có \(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\Rightarrow a+b\le\sqrt{2}\)
\(4+a+b+\frac{4}{a+b}=4+\left(a+b+\frac{2}{a+b}\right)+\frac{2}{a+b}\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
\(\Rightarrow A\ge4+3\sqrt{2}\)
câu 2
ta có:\(\left(2b^2+a^2\right)\left(2+1\right)\ge\left(2b+a\right)^2\Rightarrow3c\ge a+2b\)
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(Q.E.D\right)\)