K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

a = 1 nha

4 tháng 8 2018

\(11\times a=11\)

\(\Leftrightarrow a=11:11\)

\(\Leftrightarrow a=1\)

9 tháng 3 2022

\(x=-\dfrac{3}{16}+\dfrac{1}{4}=\dfrac{1}{16}\)

bạn viết rõ đề nhé 

26 tháng 7 2021

\(x^2-6x+11=x^2-2.3.x+9+2=\left(x-3\right)^2+2\ge2\)

dấu"=" xảy ra<=>x=3

\(4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.2x+4-7\right)\)

\(=-[\left(x-2\right)^2-7]\le7\) dấu"=" xay ra<=>x=2

a) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

b) Ta có: \(-x^2+4x+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x=2

AH
Akai Haruma
Giáo viên
24 tháng 11 2021

Lời giải:

Theo định lý Fermat nhỏ thì: $3^{10}\equiv 1\pmod {11}; 4^{10}\equiv 1\pmod {11}$

$\Rightarrow$:

$3^{2021}=(3^{10})^{202}.3\equiv 3\pmod {11}$

$4^{2021}=(4^{10})^{202}.4\equiv 4\pmod {11}$

$\Rightarrow A=3^{2021}+4^{2021}\equiv 3+4\equiv 7\pmod {11}$

Tức $A$ chia $11$ dư $7$

---------------------------------

Tương tự:

$3^{12}\equiv 1\pmod {13}$

$\Rightarrow 3^{2021}=(3^{12})^{168}.3^5\equiv 3^5\equiv 9\pmod {13}$

Tương tự: $4^{2021}\equiv 4^5\equiv 10\pmod {13}$

$\Rightarrow A\equiv 9+10\equiv 6\pmod {13}$

Vậy $A$ chia $13$ dư $6$

NV
6 tháng 8 2021

\(N^2=\left(3a-2b\right)^2=\left(\dfrac{3}{\sqrt{2}}.\sqrt{2}a-\dfrac{2}{\sqrt{5}}.\sqrt{5}b\right)^2\le\left(\dfrac{9}{2}+\dfrac{4}{5}\right)\left(2a^2+5b^2\right)=\dfrac{583}{10}\)

\(\Rightarrow-\sqrt{\dfrac{583}{10}}\le N\le\sqrt{\dfrac{583}{10}}\)

\(N_{max}=\sqrt{\dfrac{583}{10}}\) 

\(N_{min}=-\sqrt{\dfrac{583}{10}}\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Mẫu số liệu trên được xếp có 11 số liệu nên \({M_e} = 6\).

27 tháng 12 2021

ê