phân tích đa thức
a)x^4+4
4x^4+4x^2y^2-8y^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 4x + 3
= x2 + 3x + x +3
= ( x2 + 3 ) + ( x + 3 )
= x ( x + 3 ) + ( x + 3 )
= ( x + 3 ) ( x + 1 )
b) 4x2 - 4x - 3
= 4x2 + 2x - 6x - 3
= ( 4x2 + 2x ) - ( 6x + 3 )
= 2x ( 2x + 1 ) - 3 ( 2x + 1 )
= ( 2x + 1 )( 2x - 3 )
c) x2 - x - 12
= x2 + 3x - 4x - 12
= ( x2 + 3x ) - ( 4x + 12 )
= x ( x + 3 ) - 4 ( x + 3 )
= ( x + 3 ) ( x - 4 )
d) 4x4 - 4x2y2 - 8y4
= 4 ( x4 - x2y2 - 2y4 )
Hk tốt
a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)
b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)
\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)
a) Ta có: \(x-2y+x^2-4y^2\)
\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)
\(=\left(x-2y\right)\left(1+x+2y\right)\)
b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)
\(=\left(x+y\right)^2-\left(2xy\right)^2\)
\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)
\(4.\left(2x+3\right)\left(2x-1\right)\left(x-3\right)\left(4x+1\right)+44x^2\)
\(=4.\left(4x^2+4x-3\right)\left(4x^2-11x-3\right)+44x^2\)
Đặt \(4x^2+4x-3=t\)
\(\Rightarrow4.\left(2x+3\right)\left(2x-1\right)\left(x-3\right)\left(4x+1\right)+44x^2\)
\(=4.t.\left(t-15x\right)+44x^2\)
\(=4t^2-60tx+44x^2\)
\(=4.\left(t^2-15tx+11x^2\right)\)
Tự lm nốt nhé~
4x(x-2y)+8y(2y-x)
=4x(x-2y)-8y(x-2y)
=(4x-8y)(x-2y)
=4(x-2y)(x-2y)
=4(x-2y)^2
\(4x\left(x-2y\right)+8y\left(2y-x\right)\)
\(=\left(x-2y\right)\left(4x-8y\right)\)
\(=\left(x-2y\right)\left(x-2y\right).4\)\(=\left(x-2y\right)^2\)
\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
\(=\left(x+1\right)^4+x^2\left(x+1\right)^2+2x\left(x+1\right)+1\)
\(=\left(x+1\right)^2.\left(2x^2+2x+1\right)+\left(2x^2+2x+1\right)\)
\(=\left(2x^2+2x+1\right)\left(x^2+2x+2\right)\)
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(2-x^2\right)\left(3x^2+2\right)\)
\(4x^4+4x^2y^2-8y^4\)
\(=4\left(x^4+x^2y^2-2y^4\right)\)
\(=4\left(x^4-x^2y^2+2x^2y^2-2y^4\right)\)
\(=4\left[x^2\left(x^2-y^2\right)+2y^2\left(x^2-y^2\right)\right]\)
\(=4\left(x^2+2y^2\right)\left(x^2-y^2\right)\)
\(=4\left(x^2+2y^2\right)\left(x-y\right)\left(x+y\right)\)
a) \(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b) \(4x^4+4x^2y^2-8y^4=4x^4+4x^2y^2+y^4-9y^4\)
\(=\left(2x^2+y^2\right)^2-9y^4=\left(2x^2+y^2+3y^2\right)\left(2x^2+y^2-3y^2\right)\)
\(=\left(2x^2+4y^2\right)\left(2x^2-2y^2\right)\)
\(=4\left(x^2+2y^2\right)\left(x^2-y^2\right)=4\left(x^2+2y^2\right)\left(x-y\right)\left(x+y\right)\)