CMR (106-57) chia hết cho 59
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
106 - 57 = (2.5)6 - 56.5 = 26.56 - 56.5=56.(26 - 5)=56.59⋮ 59
= \(\left(7+7^2+7^3\right)+...+\left(7^{58}+7^{59}+7^{60}\right)\)
= \(7\left(1+7+7^2\right)+...+7^{58}\left(1+7+7^2\right)\)
= \(57.7+...+57.7^{58}\) \(⋮57\)
\(=7\left(1+7+7^2\right)+...+7^{58}\left(1+7+7^2\right)\)
\(=57\cdot\left(1+...+7^{58}\right)⋮57\)
Câu hỏi của lx l - Toán lớp 6 - Học toán với OnlineMath
Em xem bài làm ở link này nhé!!
1.
A=5959(1+59)=5959.60 chia hết cho 60
B=798(72+1)=798.50 chia hết cho 5
2.
7( 2a+3b)=14a+21b=13a+a+8b+13b=13(a+b)+(a+8b) chia hết cho 13 vì 2a+3b chia hết cho 13
Suy a+8b chia hết cho 13
439 + 440 + 441 chia hết cho 28
Ta có : 28 = 4 x 7
Gọi B = 439 + 440 + 441
B = 439 + 440 + 441
B = 439 ( 1 + 4 + 16 )
B = 439 21 chia hết cho 4 và 7 vì 439 chia hết cho 4 và 21 chia hết cho 7
=> B chia hết cho 28
Ta có 106 - 57 = 26 . 56 - 57
= 56 . (26 - 5)
= 56 . (64 - 5)
= 56 . 59 chia hết cho 59
Vậy 106 - 57 chia hết cho 59
S=1+7+...+72021
S=(1+7)+(72+73)+...+(72020+72021)
=(1+7)+72(1+7)+...+72020(1+7)⋮8
Để chứng minh S chia hết cho 57, ta cần chứng minh (7^2021 - 1) chia hết cho 342 (vì 342 = 57 * 6).
Ta biểu diễn 7^2021 - 1 dưới dạng (7^3)^673 - 1, và áp dụng công thức a^3 - b^3 = (a - b)(a^2 + ab + b^2), ta có:
(7^3)^673 - 1 = (7^3 - 1)((7^3)^2 + 7^3 + 1)
Vì 7^3 - 1 = 342 và (7^3)^2 + 7^3 + 1 = 342^2 + 342 + 1 = 117649 + 342 + 1 = 118992 nên ta có:
(7^3)^673 - 1 = 342 * 118992
Vì 342 chia hết cho 57 nên (7^3)^673 - 1 chia hết cho 57.
Do đó S = (7^2021 - 1)/6 chia hết cho 57.
106 - 57 = 26.56 - 57 = 56.(26 - 5) = 56.59 chia hết cho 59
ta có:\(10^6-5^7⋮59\)
\(\Rightarrow\left(5.2\right)^6-5^7⋮59\)
\(\Rightarrow5^6.2^6-5^6.5⋮59\)
\(\Rightarrow5^6.\left(2^6-5\right)⋮59\)
\(\Rightarrow5^6.59⋮59\)
\(\Rightarrow59⋮59\Rightarrow\left(10^6-5^7\right)⋮59\)