tính giá trị đa thức 7x2 - 2x + 5 biết x2 + x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay lần lượt các giá trị x vào đa thức P(x) ta tính được:
P(–1) = (–1)2 – 2(–1) – 8 = 1 + 2 – 8 = –5
P(0) = 02 – 2.0 – 8 = –8
P(4) = 42 – 2.4 – 8 = 16 – 8 – 8 = 0
Thay lần lượt các giá trị x vào đa thức P(x) ta tính được:
P(–1) = (–1)2 – 2(–1) – 8 = 1 + 2 – 8 = –5
P(0) = 02 – 2.0 – 8 = –8
P(4) = 42 – 2.4 – 8 = 16 – 8 – 8 = 0
P + Q = (-5x4 +3x3 + 7x2 + x – 3) + (5x4 – 4x3 – x2 + 3x + 3)
= -5x4 +3x3 + 7x2 + x – 3 + 5x4 – 4x3 – x2 + 3x + 3
= (-5x4 + 5x4 ) + (3x3 – 4x3 ) + (7x2 – x2 ) + (x + 3x) + (-3 + 3)
= 0 + (-x3) + 6x2 +4x
= -x3 + 6x2 +4x
P – Q = (-5x4 +3x3 + 7x2 + x – 3) - (5x4 – 4x3 – x2 + 3x + 3)
= -5x4 +3x3 + 7x2 + x – 3 - 5x4 + 4x3 + x2 - 3x - 3
= (-5x4 - 5x4 ) + (3x3 + 4x3 ) + (7x2 + x2 ) + (x - 3x) + (-3 - 3)
= -10x4 + 7x3 + 8x2 + (-2x) + (-6)
= -10x4 + 7x3 + 8x2 – 2x – 6
a) Đa thức P + Q có bậc là 3
Đa thức P – Q có bậc là 4
b) +) Tại x = 1 thì P + Q = - 13 + 6. 12 + 4.1 = 9
P – Q = -10. 14 + 7.13 + 8.12 – 2. 1 – 6 = -3
+) Tại x = - 1 thì P + Q = - (-1)3 + 6. (-1)2 + 4.(-1) = -(-1) + 6.1 - 4 = 3
P – Q = -10. (-1)4 + 7.(-1)3 + 8.(-1)2 – 2. (-1) – 6 = -10 . 1 + 7.(-1) + 8 + 2 – 6 = -13
c) Đa thức P + Q có nghiệm là x = 0 vì đa thức này có hệ số tự do bằng 0.
a) P(x) = 7x2 . (x2 – 5x + 2 ) – 5x .(x3 – 7x2 + 3x)
= 7x2 . x2 + 7x2 . (-5x) + 7x2 . 2 – [5x. x3 + 5x . (-7x2) + 5x . 3x]
= 7. (x2 . x2) + [7.(-5)] . (x2 . x) + (7.2).x2 – {5. (x.x3) + [5.(-7)]. (x.x2) + (5.3).(x.x)}
= 7x4 + (-35). x3 + 14x2 – [ 5x4 + (-35)x3 + 15x2 ]
= 7x4 + (-35). x3 + 14x2 - 5x4 + 35x3 - 15x2
= (7x4 – 5x4) + [(-35). x3 + 35x3 ] + (14x2 - 15x2 )
= 2x4 + 0 - x2
= 2x4 – x2
b) Thay x = \( - \dfrac{1}{2}\) vào P(x), ta được:
P(\( - \dfrac{1}{2}\)) = 2. (\( - \dfrac{1}{2}\))4 – (\( - \dfrac{1}{2}\))2 \))
\(\begin{array}{l} = 2.\dfrac{1}{{16}} - \dfrac{1}{4} \\ = \dfrac{1}{8} - \dfrac{{2}}{8} \\ = \dfrac{-1}{8} \end{array}\)
+ ) x 3 + 7 x 2 + 12 x + 4 = x 3 + 6 x 2 + x 2 + 12 x + 8 – 4 = ( x 3 + 6 x 2 + 12 x + 8 ) + ( x 2 – 4 ) = ( x 3 + 3 . 2 . x 2 + 3 . 2 2 . x + 2 3 ) + ( x 2 – 4 ) = ( x + 2 ) 3 + ( x – 2 ) ( x + 2 ) = ( x + 2 ) ( ( x + 2 ) 2 + x – 2 ) = ( x + 2 ) ( x 2 + 4 x + x – 2 ) = ( x + 2 ) ( x 2 + 5 x + 2 )
Đáp án cần chọn là: A
\(a,n^3-2n^2+3n+3=n^3-n^2-n^2+n+2n-2+5\\ =\left(n-1\right)\left(n^2-n+2\right)+5\\ \Leftrightarrow n^3-2n^2+3n+3⋮\left(n-1\right)\\ \Leftrightarrow5⋮n-1\\ \Leftrightarrow n-1\in\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
\(b,\Leftrightarrow x^4+6x^3+7x^2-6x+a\\ =x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1-1+a\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)-1+a\\ =\left(x^2+3x-1\right)^2+a-1\)
Để \(x^4+6x^3+7x^2-6x+a⋮x^2+3x-1\)
\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)