K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(a^5+b^5-\left(a+b\right)^5\)

\(=a^5+b^5-a^5-5a^4b-10a^3b^2-10a^2b^3-5ab^4-b^5\)

\(=-5ab\left(a^3+2a^2b+2ab^2+b^3\right)\)

\(=-5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)

2 tháng 6 2018

\(a^5+b^5-\left(a+b\right)^5=a^5+b^5-\left(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\right)\)( tam giác Pascal )

\(=5a^4b+10a^3b^2+10a^2b^3+5ab^4=5ab\left(a^3+2a^2b+2ab^2+b^3\right)\)

\(=5ab\left(\left(a^3+b^3\right)+\left(2a^2b+2ab^2\right)\right)=5ab\left(\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right)\)

\(=5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)

2 tháng 6 2018

Bạn làm đúng nhưng quên đấu âm

20 tháng 11 2021

A. Cách B sai vì 5 : 2/5 thì ko thể nào = 25 đc.

10 tháng 10 2018

a, 4y(x-1)-(1-x)

=(x-1)(4y+1)

b,3x(z+2)+5(-x-2)

=3x(z+2)-5(x+2)

=(z+2)(3x-5)

23 tháng 9 2018

\(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)

\(=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]\)

\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\)

\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)

\(=\left[\left(a-b\right)^2-3^2\right].\left[\left(a+b\right)^2-1\right]\)

\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)

Tham khảo nhé~

14 tháng 10 2020

a) \(\left(a^2+b^2-5\right)^2-2\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5\right)^2-\left(\sqrt{2}.ab+\sqrt{2}.2\right)^2\)

\(=\left(a^2+b^2-5-\sqrt{2}.ab-\sqrt{2}.2\right).\left(a^2+b^2-5+\sqrt{2}.ab+\sqrt{2}.2\right)\)

b) \(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right)^2\)

\(\left(4a^2-3a-18-4a^2-3a\right).\left(4a^2-3a-18+4a^2+3a\right)\)

\(=\left(-6a-18\right).\left(8a^2-18\right)\)

\(=\left(-6\right).\left(a+3\right).2.\left(4a^2-9\right)\)

\(=\left(-12\right).\left(a+3\right).\left(2a-3\right).\left(2a+3\right)\)

14 tháng 10 2020

a) Xem lại đề

b) ( 4a2 - 3a - 18 )2 - ( 4a2 + 3a )2

= [ ( 4a2 - 3a - 18 ) - ( 4a2 + 3a ) ][ ( 4a2 - 3a - 18 )​ + ( 4a2 + 3a ) ]

= ( 4a2 - 3a - 18 - 4a2 - 3a )( 4a2 - 3a - 18 + 4a2 + 3a )

= ( -6a - 18 )( 8a2 - 18 )

= -6( a + 3 ).2( 4a2 - 9 )

= -12( a + 3 )( 4a2 - 9 )

= -12( a + 3 )( 2a - 3 )( 2a + 3 )

5 tháng 10 2023

\(C=c\left[b\left(a+d\right)\left(b-c\right)+a\left(b+d\right)\left(c-a\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[\left(ab+bd\right)\left(b-c\right)+\left(ab+ad\right)\left(c-a\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[ab^2-abc+b^2d-bcd+abc-a^2b+acd-a^2d\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[\left(ab^2-a^2b\right)+\left(b^2d-a^2d\right)+\left(acd-bcd\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[ab\left(b-a\right)+d\left(a+b\right)\left(b-a\right)+cd\left(a-b\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left(a-b\right)\left(-ab-da-db+cd\right)+ab\left(c+d\right)\left(a-b\right)\)

\(C=\left(a-b\right)\left(-abc-acd-bcd+c^2d+abc+abd\right)\)

\(C=\left(a-b\right)\left(-acd-bcd+abd+c^2d\right)\)

\(C=c\left(a-b\right)\left(c^2+ab-ac-bc\right)\)

\(C=c\left(a-b\right)\left[\left(c^2-ac\right)-\left(bc-ab\right)\right]\)

\(C=c\left(a-b\right)\left[c\left(c-a\right)-b\left(c-a\right)\right]\)

\(C=c\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

 

22 tháng 9 2019

giúp vs

22 tháng 9 2019

a^3+b^3+3a^2b+3ab^2+a^3-b^3-3a^2b+3ab^2

=2a^3+6ab^2=2a(a^2+3b^2)

27 tháng 10 2017

b.\(A=\)viết lại đề nha bn

\(A=\frac{1^4+4}{3^4+4}.\frac{5^4+4}{7^4+4}...\frac{21^4+4}{23^4+4}\)

\(A=\frac{\left(4.1-3\right)^4+4}{\left(4.1-1\right)^4+4}.\frac{\left(4.2-3\right)^4+4}{\left(4.2-1\right)^4+4}...\frac{\left(4.6-3\right)^4+4}{\left(4.6-1\right)^4+4}\)

\(A=\frac{16.1^2-32.1+17}{16.1^2+1}.\frac{16.2^2-32.2+17}{16.2^2+1}....\frac{16.6^2-32.6+17}{16.6^2+1}\)

\(A=\frac{1}{17}.\frac{17}{65}.\frac{65}{145}....\frac{401}{577}=\frac{1}{577}\)

tíck mình nha bn thanks

27 tháng 10 2017

a.\(a^4+a=a\left(a^3+1\right)=a\left(a+1\right)\left(a^2-a+1\right)\)