K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

0 + 0= 0

6 + 0 = 5

3 + 0 = 3

2 + 0 = 2

tk nha bạn

2 tháng 8 2018

\(0+0=0\)

\(6+0=6\)

\(3+0=3\)

\(2+0=2\)

             ~~~~~Hok tốt~~~~~

23 tháng 11 2019

Lời giải chi tiết:

0 < 1 0 < 5 7 > 0 2 > 0
0 < 2 8 > 0 0 < 4 2 = 2
0 < 3 9 > 0 0 < 6 0 = 0
27 tháng 12 2016

1+2+3+4+5+6+7+8+9+0+0+0+0+0+0+9+8+7+6+5+34+2+3+5=124

mik trả lời đầu k mik nha Kết quả hình ảnh cho mizuki aikatsu gif

27 tháng 12 2016

124 k mình nhé

14 tháng 4 2023

A =(-0,1) + 0,2 + (-0,3) + 0,4 - 0,5 + 0,6 - 0,7 - (-0,8)

B = -0,1 + 0,2 - 0,3 + 0,4 - 0,5 + 0,6 - 0,7 + 0,8

B = -0,1 + ( 0,2 + 0,8) - ( 0,3 + 0,7) + ( 0,6 + 0,4) - 0,5

B = -0,1 + 1  - 1 + 1 - 0,5

B = - ( 0,1 + 0,5) + ( 1 - 1) + 1

B = -0,6 + 0 + 1

B =  0,4 

11 tháng 11 2017

Phương pháp giải:

Thực hiện phép tính lần lượt từ trái sang phải.

Lời giải chi tiết:

a) 4 : 4 × 0 = 1 × 0 = 0

    8 : 2 × 0 = 4 × 0 = 0

    3 × 0 : 2 = 0 : 2 = 0

b) 0 : 5 × 5 = 0 × 5 = 0

    0 : 2 × 1 = 0 × 1 = 0

    0 × 6 : 3 = 0 : 3 = 0

30 tháng 12 2021

Tất cả bằng0

23 tháng 5 2022

Chứng minh rằng trực tâm H của tam giác ABC, trọng tâm G của tam giác A’B’C’ cùng nằm trên một đường thẳng đi qua O. Viết phương trình đường thẳng đó.
 

DD
24 tháng 5 2022

Tọa độ điểm \(G\) là \(G\left(\dfrac{6+0+0}{3},\dfrac{0+4+0}{3},\dfrac{0+0+3}{3}\right)\) suy ra \(G\left(2,\dfrac{4}{3},1\right)\)

\(\overrightarrow{AB}=\left(-2,3,0\right),\overrightarrow{BC}=\left(0,-3,4\right),\overrightarrow{CA}=\left(2,0,-4\right)\)

Đặt \(H\left(a,b,c\right)\).

Vì \(H\) là trực tâm tam giác \(ABC\) nên 

\(\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{CA}=0\\\left[\overrightarrow{AB},\overrightarrow{AC}\right].\overrightarrow{AH}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3b+4c=0\\2a-4c=0\\12\left(a-2\right)+8b+6c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{72}{61}\\b=\dfrac{48}{61}\\c=\dfrac{36}{61}\end{matrix}\right.\) suy ra \(H\left(\dfrac{72}{61},\dfrac{48}{61},\dfrac{36}{61}\right)\).

\(\overrightarrow{OG}=\left(2,\dfrac{4}{3},1\right)\)

Đường thẳng qua OG: \(\left\{{}\begin{matrix}x=2t\\y=\dfrac{4}{3}t\\z=t\end{matrix}\right.\)

Bằng cách thử trực tiếp, ta thấy H nằm trên đường thẳng OG. 

 

12 tháng 12 2021

Answer:

\(3x^2-4x=0\)

\(\Rightarrow x\left(3x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)

\(\left(x^2-5x\right)+x-5=0\)

\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

\(x^2-5x+6=0\)

\(\Rightarrow x^2-2x-3x+6=0\)

\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)

\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

\(5x\left(x-3\right)-x+3=0\)

\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)

\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)

\(x^2-2x+5=0\)

\(\Rightarrow\left(x^2-2x+1\right)+4=0\)

\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)

Vậy không có giá trị \(x\) thoả mãn

\(x^2+x-6=0\)

\(\Rightarrow x^2+3x-2x-6=0\)

\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)

\(1,\)

\(2x\left(x-3\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)

\(2,\)

\(3x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

\(3,\)

\(x^4-x^2=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

\(4,\)

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(5,\)

\(x\left(x+6\right)-10\left(x-6\right)=0\)

\(\Leftrightarrow x^2+6x-10x+60=0\)

\(\Leftrightarrow x^2-4x+60=0\)

\(\Leftrightarrow x^2-4x+4+56=0\)

\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)

=> Phương trình vô nghiệm

14 tháng 8 2023

a) \(0\times3=0\)

\(0\times4=0\)

\(0\times5=0\)

b) \(0\times6=0\)

\(0\times7=0\)

\(0\times9=0\)

\(0:6=0\)

\(0:7=0\)

\(0:8=0\)

\(0:9=0\)