Voi giá trị nào của biến, đa thức có gái trị nhỏ nhất
A= (x-1)(x+2)(x+3)(x+6)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x2 + x + 1
= x2 + 2.x.1/2 + 1/4 + 3/4
= (x + 1/2)2 + 3/4
Mà (x + 1.2)2 \(\ge\)0
=> (x + 1/2)2 + 3/4 \(\ge\)3/4
Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2
b. (x - 1)(x + 2)(x + 3)(x + 6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62
= (x2 + 5x)2 - 36
Mà (x2 + 5x)2 \(\ge\)0
=> (x2 + 5x)2 - 36 \(\ge\)-36
Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.
a. x2 + x + 1
= x2 + 2.x.1/2 + 1/4 + 3/4
= (x + 1/2)2 + 3/4
Mà (x + 1.2)2 ≥0
=> (x + 1/2)2 + 3/4 ≥3/4
Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2
b. (x - 1)(x + 2)(x + 3)(x + 6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62
= (x2 + 5x)2 - 36
Mà (x2 + 5x)2 ≥0
=> (x2 + 5x)2 - 36 ≥-36
Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.
1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)
=\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)
=\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1
Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1
2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)
=\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)
Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)
1)P(x)=4x-x2+1=-(x2-4x+4)+5=-(x-2)2+5
Do (x-2)2>0
=>-(x-2)2<0
=>P(x)=-(x-2)2+5<5
=>Max P=5<=>(x-2)2=0<=>x=2
2)A(x)=x2-4x+y2-8y+6=(x2-4x+4)+(y2-8y+16)-14
=(x-2)2+(y-4)2-14
Do (x-2)2>0
(y-4)2>0
=>(x-2)2+(y-4)2>0
=>A(x)=(x-2)2+(y-4)2-14>-14
=>Min A=-14<=>(x-2)2=0 và (y-4)2=0<=>x=2 và y=4
P(x) = 4x - x^2 + 1
= - ( x^2 - 4x + 10)
= -( x^2 - 2.x.2 + 4 + 6)
= -( x- 2 )^2 - 6
Vậy GTLN của p là -6 tại x - 2 = 0 => x = 2
VẬy x = 2 thì ....
B2)
A(x) = x^2 - 4x + y^2 - 8y + 6
= x^2 - 2.x . 2 + 4 + y^2 - 2.y.4 + 16 - 14
=( x - 2)^2 + (y - 4)^2 - 14
VẬy GTNN của bt là -14
khi x - 2 = 0 => x = 2
y - 4= 0 => y=4
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
a)\(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x=0\)
Vậy g/t P không phụ thuộc vào biến.
b)\(Q=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)=-6x^2-2+6x^2-6=-8\)
Vậy g/t Q không phụ thuộc vào biến.
b) Ta có: \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)
\(=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6\left(x^2-1\right)\)
\(=-2\left(3x^2+1\right)+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6\)
=-8
P = ( x + 2 )3 + ( x - 2 )3 - 2x( x2 + 12 )
= x3 + 6x2 + 12x + 8 + x3 - 6x2 + 12x - 8 - 2x3 - 24x
= ( x3 + x3 - 2x3 ) + ( 6x2 - 6x2 ) + ( 12x + 12x - 24x ) + ( 8 - 8 )
= 0
Vậy giá trị của P không phụ thuộc vào biến
Q = ( x - 1 )3 - ( x + 1 )3 + 6( x + 1 )( x - 1 )
= x3 - 3x2 + 3x - 1 - ( x3 + 3x2 + 3x + 1 ) + 6( x2 - 1 )
= x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6
= ( x3 - x3 ) + ( 6x2 - 3x2 - 3x2 ) + ( 3x - 3x ) + ( -1 - 1 - 6 )
= -8
Vậy giá trị của Q không phụ thuộc vào biến
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg