D = 1 + 1 . 1! + 2 . 2! + 3 . 3! + ... + 100 . 100!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
Ta có :
\(D=\dfrac{100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+.......+\dfrac{99}{100}}\)
\(\Leftrightarrow D=\dfrac{100-1-\dfrac{1}{2}-\dfrac{1}{3}-......-\dfrac{1}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+.....+\dfrac{99}{100}}\)
\(\Leftrightarrow D=\dfrac{99-\dfrac{1}{2}-\dfrac{1}{3}-......-\dfrac{1}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+....+\dfrac{99}{100}}\)
\(\Leftrightarrow D=\dfrac{\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+.....+\left(1-\dfrac{1}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+.......+\dfrac{99}{100}}\)
\(\Leftrightarrow D=\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+........+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+......+\dfrac{99}{100}}=1\)
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Ta có : \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{100}}\)
\(\Leftrightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{99}}\)
\(\Leftrightarrow2A-A=2-\frac{1}{2^{99}}\)
\(\Leftrightarrow A=2-\frac{1}{2^{99}}\)
B tương tự