A=1+5+125+625
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{625}{625}+\dfrac{125}{625}+\dfrac{25}{625}+\dfrac{5}{625}+\dfrac{1}{625}\)
\(=\dfrac{781}{625}\)
S = 1 + \(\dfrac{1}{5}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{125}\) + \(\dfrac{1}{625}\)
5.S = 5 +1 + \(\dfrac{1}{5}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{125}\)
5S - S = 5 - \(\dfrac{1}{625}\)
S = ( 5 - \(\dfrac{1}{625}\)) : 4
S = \(\dfrac{781}{625}\)
\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3}{4}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}\)
\(=1\)
\(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}=\dfrac{1}{4}+\dfrac{3}{4}=1\)
\(A=1+\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{1}{125}+...+\dfrac{1}{625}+\dfrac{1}{78125}\)
\(=1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^7}\)
\(5A=5+1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^6}\)
\(\Leftrightarrow5A-A=5+1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^6}-1-\dfrac{1}{5}-\dfrac{1}{5^2}-\dfrac{1}{5^3}-...-\dfrac{1}{5^7}\)
\(\Leftrightarrow4A=5-\dfrac{1}{5^7}\Leftrightarrow A=\dfrac{5-\dfrac{1}{5^7}}{4}=\dfrac{\dfrac{390624}{78125}}{4}=\dfrac{390624}{312500}=\dfrac{97656}{78125}\)
\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}=\dfrac{4}{4}=1\)
\(A=756\)
A = 1 + 5 + 125 + 625
A = 756