tìm x biết
a,\(\frac{1}{100}< \frac{x}{110}< \frac{1}{50}\)
b,\(\frac{123}{1000}< \frac{x}{2008}< \frac{124}{1000}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{125}+\frac{x+2}{124}+\frac{x+3}{123}+\frac{x+4}{122}+\frac{x+146}{5}=0\)
\(\left(\frac{x+1}{125}+1\right)+\left(\frac{x+2}{124}+1\right)+\left(\frac{x+3}{123}+1\right)+\left(\frac{x+4}{122}+1\right)+\left(\frac{x+146}{5}-4\right)=0\)
\(\frac{x+126}{125}+\frac{x+126}{124}+\frac{x+126}{123}+\frac{x+126}{122}+\frac{x+126}{5}=0\)
\(\left(x+126\right).\left(\frac{1}{125}+\frac{1}{124}+\frac{1}{123}+\frac{1}{122}+\frac{1}{5}\right)=0\)
vì \(\left(\frac{1}{125}+\frac{1}{124}+\frac{1}{123}+\frac{1}{122}+\frac{1}{5}\right)\ne0\)nên x + 126 = 0 \(\Rightarrow\)x = -126
Ta có : \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...+\left|x+\frac{1}{110}\right|\ge0\forall x\)
=> 11x \(\ge\)0
=> x \(\ge\)0
Khi đó \(\orbr{\begin{cases}x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=11x\left(10\text{ số hạng x }\right)\\x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=-11x\left(10\text{ số hạng x}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=11x\\10x+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=11x\\10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=-11x\end{cases}}\)
=> \(\orbr{\begin{cases}10x+\left(1-\frac{1}{11}\right)=11x\\10x+\left(1-\frac{1}{11}\right)=-11x\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{10}{11}\\21x=-\frac{10}{11}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{10}{11}\left(\text{tm}\right)\\x=-\frac{10}{231}\left(\text{loại}\right)\end{cases}}}\)
Vậy \(x=\frac{10}{11}\)
a )
\(\Rightarrow\frac{x-100}{24}-1+\frac{x-98}{26}-1+\frac{x-96}{26}-1=0\)
\(\frac{x-124}{24}+\frac{x-124}{26}+\frac{x-124}{28}=0\)
\(\left(x-124\right)\left(\frac{1}{26}+\frac{1}{24}+\frac{1}{28}\right)=0\)
\(\Rightarrow x-124=0\Rightarrow x=124\)