Cho tam giác ABD có 3 góc nhọn. Trên tia đối AB lấy D scho AD=AB. TRên tđối AC lấy E scho AE=AC
a, Cm DE// và bằng BC
b. Từ E kẻ EH vuông góc BD, H thuộc BD. Trên tđối HE lấy F scho HF=HE. Cm AF=AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: ΔBAD=ΔBED(cmt)
nên DA=DE(hai cạnh tương ứng)
Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DE(cmt)
nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)
Sửa đề: BA=BE
a) Xét ΔBAD và ΔBED có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE⊥BC(đpcm)
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
Xét ΔDAF và ΔDEC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DF=DC
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: ΔDAF=ΔDEC
=>\(\widehat{DAF}=\widehat{DEC}\)
mà \(\widehat{DEC}=90^0\)
nên \(\widehat{DAF}=90^0\)
Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)
=>\(\widehat{BAF}=90^0+90^0=180^0\)
=>B,A,F thẳng hàng
Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc CB
c: BA=BE
DA=DE
=>BD là trung trực của AE
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>F,D,E thẳng hàng
Mình sủa lại đề bài một chút
Cho tam giác ABC có 3 góc nhọn thì mới vẽ hình được.
a, \(\Delta ADE=\Delta ABC\left(c.g.c\right)\Rightarrow DE=BC\)(2 cạnh tương ứng)
và \(\widehat{ADE}=\widehat{ABC}\) ( 2 GÓC TƯƠNG ỨNG)
\(\Rightarrow DE//BC\)(vì có 2 góc so le trong bằng nhau)
b, \(EH\perp BD\left(gt\right)\) hay \(EF\perp AH\)
HF= HE (gt) và H thuộc EF nên H là trung điểm của EF. Do đó: AH là đường trung tuyến của tam giác AEF
Tam giác AEF có AH vừa là đường cao vừa là đường trung tuyến nên tam giác AEF cân tại A
\(\Rightarrow AE=AF\)mà AE = AC(gt)
Vậy AF = AC.
Chúc bạn học tốt.
Cảm ơn bạn nhiều nhé :D =))