K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

BĐT cần c/m tương đương với:

\(\left(\frac{a^2+b^2}{a+b}-\frac{a+b}{2}\right)+\left(\frac{b^2+c^2}{b+c}-\frac{b+c}{2}\right)+\left(\frac{c^2+a^2}{c+a}-\frac{c+a}{2}\right)\ge3-a-b-c\)

\(\Leftrightarrow\)\(\frac{\left(a-b\right)^2}{2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\left(c+a\right)}\ge3-a-b-c\)

Ta có:  \(3-a-b-c=\frac{9-\left(a+b+c\right)^2}{3+a+b+c}=\frac{3\left(a^2+b^2+c^2\right)-\left(a+b+c\right)^2}{3+a+b+c}\)

\(=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{3+a+b+c}\le\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2\left(a+b+c\right)}\)

Ta cần chứng minh:

\(\frac{\left(a-b\right)^2}{2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\left(c+a\right)}\ge\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2\left(a+b+c\right)}\)

\(\Leftrightarrow\)\(\frac{c\left(a-b\right)^2}{2\left(a+b\right)\left(a+b+c\right)}+\frac{a\left(b-c\right)^2}{2\left(b+c\right)\left(a+b+c\right)}+\frac{b\left(c-a\right)^2}{2\left(c+a\right)\left(a+b+c\right)}\ge0\) đúng

Vậy BĐT đc c/m

2 tháng 8 2017

cộng mỗi phân thức với 1 xem thế nào Thành

4 tháng 8 2017

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

=> BDT cần CMR <=> \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{a^2}{a^2+b^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{c^2+a^2}\)

Ta có \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

=>VT\(\ge\frac{a+b+c}{2}\) (Hơi tắt nên tự hiểu)

Ta đi Cm \(\frac{a+b+c}{2}\ge\frac{a^2}{a^2+b^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{c^2+a^2}\)

<=> \(\frac{a+b+c}{2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{c^2+b^2}+\frac{a^2}{a^2+c^2}\ge3\)(*)

\(\frac{a+b+c}{2}\ge\frac{3}{2}\)

\(\frac{b^2}{a^2+b^2}+\frac{c^2}{c^2+b^2}+\frac{a^2}{c^2+a^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2b^2+b^2c^2+c^2a^2\right)}\ge\frac{3}{2}\)

=>VT (*) \(\ge3\). Từ đó ta có dpcm

Kiêm đâu lắm bài bdt hay. Gửi link

NV
18 tháng 4 2021

Ta chứng minh BĐT phụ sau:

\(\dfrac{a^3}{a^2+b^2}\ge\dfrac{2a-b}{2}\)

Thật vậy, BĐT tương đương:

\(2a^3-\left(2a-b\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow b\left(a-b\right)^2\ge0\) (luôn đúng với a;b dương)

Tương tự: \(\dfrac{b^3}{b^3+c^3}\ge\dfrac{2b-c}{2}\) ; \(\dfrac{c^3}{c^3+a^3}\ge\dfrac{2c-a}{2}\)

Cộng vế với vế:

\(VT\ge\dfrac{a+b+c}{2}=3\) (đpcm)

24 tháng 8 2016

Từ dk suy ra 1/bc+1/ac+1/ab+1/c+1/b+1/a=6                                                             đặt 1/a=x;1/b=y;1/c=z→x+y+x+xy+yz+xz=6    ta phải cm x2+y2+z2>=3                              Ta có:2(x2+y2+z2)>=2(xy+yz+xz)  (1)                                                                                       (x-1)2>=0→x2>=2x-1      Tương tự :y2>=2y-1;z2>=2z-1                                       do đó :x2+y2+z2>=2(x+y+z)-3  (2)                                                                     cộng vế 1 vs 2 ta có:3(x2+y2+z2)>=2(x+y+z+xy+yz+xz)-3                                                                   <=>3(x2+y2+z2)>=2.6-3                                                                                             <=>x2+y2+z2>=3

 

17 tháng 3 2020

Bài hay quá!

Đặt \(a=\frac{3x}{x+y+z};b=\frac{3y}{x+y+z};c=\frac{3z}{x+y+z}\left(x;y;z>0\right)\)

Sau khi quy đồng cần chứng minh:

\(2\, \left( x+y+z \right) \left( {x}^{4}y+{x}^{4}z+3\,{x}^{3}{y}^{2}- 11\,{x}^{3}yz+3\,{x}^{3}{z}^{2}+3\,{x}^{2}{y}^{3}+3\,{x}^{2}{y}^{2}z+3 \,{x}^{2}y{z}^{2}+3\,{x}^{2}{z}^{3}+x{y}^{4}-11\,x{y}^{3}z+3\,x{y}^{2} {z}^{2}-11\,xy{z}^{3}+x{z}^{4}+{y}^{4}z+3\,{y}^{3}{z}^{2}+3\,{y}^{2}{z }^{3}+y{z}^{4} \right) \geq 0 \)(gõ Latex, không biết ad đã fix lỗi chưa, nếu nó không hiện thì hỏi ad, đừng hỏi em!)

Hay là: \( \left( {x}^{4}y+{x}^{4}z+3\,{x}^{3}{y}^{2}- 11\,{x}^{3}yz+3\,{x}^{3}{z}^{2}+3\,{x}^{2}{y}^{3}+3\,{x}^{2}{y}^{2}z+3 \,{x}^{2}y{z}^{2}+3\,{x}^{2}{z}^{3}+x{y}^{4}-11\,x{y}^{3}z+3\,x{y}^{2} {z}^{2}-11\,xy{z}^{3}+x{z}^{4}+{y}^{4}z+3\,{y}^{3}{z}^{2}+3\,{y}^{2}{z }^{3}+y{z}^{4} \right) \geq 0 \)

Or:

\(9\, \left( 1/4\, \left( x-2\,z+y \right) ^{2}+3/4\, \left( -y+x \right) ^{2} \right) {z}^{3}+3\, \left( x-2\,z+y \right) ^{3}{z}^{2}+ \left( \left( 3/4\, \left( x-2\,z+y \right) ^{2}+1/4\, \left( -y+x \right) ^{2} \right) \left( -y+x \right) ^{2}+ \left( x-z \right) ^{ 4}+ \left( y-z \right) ^{4} \right) z+ \left( x-z \right) \left( y-z \right) \left( \left( x-z \right) ^{3}+3\, \left( x-z \right) ^{2} \left( y-z \right) +3\, \left( x-z \right) \left( y-z \right) ^{2}+ 21\, \left( x-z \right) \left( y-z \right) z+ \left( y-z \right) ^{3} \right) \geq 0 \)

Cách xử trí: Nếu nó không hiện: Sau khi quy đồng, ta biến đối nó về như trong link sau: https://imgur.com/D8ScX4k

18 tháng 3 2020

Cách khác:

\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a^2+b^2+c^2+3\)

Or \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+3\)

Or \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+2\left(ab+bc+ca\right)\ge12\)

Or: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(ab+bc+ca\right)\ge6\)

Giả sử \(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1\)(*)

Do đó: \(VT=\frac{ab+bc+ca}{abc}+ab+bc+ca\)

\(\ge\frac{a+b+c\left(a+b\right)-1}{\frac{c\left(a+b\right)^2}{4}}+a+b+c\left(a+b\right)-1\)

\(=\frac{4\left(c+1\right)\left(a+b\right)-4}{c\left(a+b\right)^2}+\left(c+1\right)\left(a+b\right)-1\)

\(=\frac{4\left(c+1\right)\left(3-c\right)-4}{c\left(3-c\right)^2}+\left(c+1\right)\left(3-c\right)-1\ge6\)

Last inequality\(\Leftrightarrow\frac{\left(2-c\right)^3\left(c-1\right)^2}{c\left(c-3\right)^2}\ge0\). Nếu c < 2 thì ta có đpcm.

Nếu \(c\ge2\)

\(VT=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\left(ab+bc+ca\right)\)

\(>\frac{4}{a+b}+ab+c\left(a+b\right)\ge\frac{4}{a+b}+2\left(a+b\right)\ge2\sqrt{8}>3\)

AH
Akai Haruma
Giáo viên
5 tháng 4 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\text{VT}=\sum \frac{a+1}{b^2+1}=\sum [(a+1)-\frac{b^2(a+1)}{b^2+1}]=\sum (a+1)-\sum \frac{b^2(a+1)}{b^2+1}\)

\(=6-\sum \frac{b^2(a+1)}{b^2+1}\geq 6-\sum \frac{b^2(a+1)}{2b}=6-\sum \frac{ab+b}{2}\)

\(=6-\frac{\sum ab+3}{2}\geq 6-\frac{\frac{1}{3}(a+b+c)^2+3}{2}=6-\frac{3+3}{2}=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

21 tháng 4 2021

Đặt \(A=\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\left(a,b,c>0\right)\).

Ta có:

\(\frac{a^3}{a^2+b^2}=\frac{a\left(a^2+b^2-b^2\right)}{a^2+b^2}=\frac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\).

Vì \(a,b>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(a^2+b^2\ge2ab\).

\(\Rightarrow\frac{1}{a^2+b^2}\le\frac{1}{2ab}\).

\(\Leftrightarrow\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\).

\(\Rightarrow\frac{-ab^2}{a^2+b^2}\ge\frac{-b}{2}\).

\(\Leftrightarrow a-\frac{ab^2}{a^2+b^2}\ge a-\frac{b}{2}\).

\(\Leftrightarrow\frac{a^3}{a^2+b^2}\ge a-\frac{b}{2}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=b>0\).

Chứng minh tương tự, ta được:

\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2}\).với \(b,c>0\)\(\left(2\right)\)

Dấu bẳng xảy ra \(\Leftrightarrow b=c>0\).

Chứng minh tương tự, ta được:

\(\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)với \(a,c>0\)\(\left(3\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a=c>0\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\)\(\ge\)\(a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}\).

\(\Leftrightarrow A\ge\frac{a+b+c}{2}\).

\(\Leftrightarrow A\ge\frac{6}{2}\)(vì \(a+b+c=6\)).

\(\Leftrightarrow A\ge3\)(điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\a+b+c=6\end{cases}}\Leftrightarrow a=b=c=2\).

Vậy nếu \(a,b,c\)là các số thực dương thỏa mãn \(a+b+c=6\)thì:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge3\).