K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

a) Đặt  \(A=16x^2-6x+3\)

\(A=\left(16x^2-6x+\frac{9}{16}\right)+\frac{39}{16}\)

\(A=\left(4x-\frac{3}{4}\right)^2+\frac{39}{16}\)

Do  \(\left(4x-\frac{3}{4}\right)^2\ge0\forall x\)

\(\Rightarrow A\ge\frac{39}{16}\)

Dấu "=" xảy ra khi :  

\(4x-\frac{3}{4}=0\Leftrightarrow4x=\frac{3}{4}\Leftrightarrow x=\frac{3}{16}\)

Vậy ...

30 tháng 7 2018

b) Đặt  \(B=\frac{5}{3}x^2-x+1\)

\(\frac{5}{3}B=\frac{25}{9}x^2-\frac{5}{3}x+\frac{5}{3}\)

\(\frac{5}{3}B=\left(\frac{25}{9}x^2-\frac{5}{3}x+\frac{1}{4}\right)+\frac{17}{12}\)

\(\frac{5}{3}B=\left(\frac{5}{3}x-\frac{1}{2}\right)^2+\frac{17}{12}\)

Do  \(\left(\frac{5}{3}x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\frac{5}{3}B\ge\frac{17}{12}\Leftrightarrow B\ge\frac{17}{20}\)

Dấu "=" xảy ra khi :  

\(\frac{5}{3}x-\frac{1}{2}=0\Leftrightarrow\frac{5}{3}x=\frac{1}{2}\Leftrightarrow x=\frac{3}{10}\)

Vậy ...

22 tháng 9 2021

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

 

20 tháng 1 2019

\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)

    \(=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\)

   \(\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)

    \(=2\)

Dấu "=" xảy ra <=> x = 2015

Vậy .......

14 tháng 5 2017

P(x^2+x+1)=x^2-x+1

=>Px^2+Px+P-x^2+x-1=0

=>(Px^2-x^2)+(Px+x)+(P-1)=0

=>x^2(P-1)+x(P+1)+(P-1)=0 (1) 

coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm

Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3

=(P-3)(1-3P)  >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3  

16 tháng 4 2017

a, Ta có: \(\left|x+4\right|\ge0\)

=> B = |x + 4| + 1996 \(\ge\)1996

Dấu "=" xảy ra <=> x + 4 = 0 <=> x = -4

Vậy GTNN của B là 1996 tại x = -4

b, Để C có giá trị nhỏ nhất 

=> x - 2 phải lớn nhất 

=> x - 2 = 5 => x = 7

=> GTNN của C = \(\frac{5}{x-2}=\frac{5}{7-2}=\frac{5}{5}=1\)

Vậy GTNN của C = 1 tại x = 7

c, Ta có: \(D=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)

Để D có giá trị nhỏ nhất

=> \(\frac{9}{x-4}\)là số nhỏ nhất

=> x - 4 phải lớn nhất 

=> x - 4 = 9 => x = 13

=> GTNN của D = \(\frac{x+5}{x-4}=\frac{13+5}{13-4}=\frac{18}{9}=2\)

Vậy GTNN của D = 2 tại x = 13

6 tháng 2 2017

Ta đặt

\(A=\frac{42-x}{x-15}=-1+\frac{27}{x-15}\)

Để cho A nguyên thì (x - 15) phải là ước nguyên của 27

Để cho A có giá trị nhỏ nhất thì (x - 15) phải là số âm lớn nhất

Từ 2 cái này ta suy ra (x - 15) phải là ước nguyên âm lớn nhất của 27

\(\Rightarrow x-15=-1\)

\(\Rightarrow x=14\)

\(\Rightarrow A=-1+\frac{27}{-1}=-28\)

6 tháng 2 2017

Phần lý luận bị lỗi 1 chỗ nhưng đáp án thì không đổi. Đọc nhầm thành A nguyên.

Sửa phần lý luận :

Để cho A nhỏ nhất thì (x - 15) phải là số nguyên âm lớn nhất:

Suy ra (x - 15) = - 1

<=> x = 14

=> A = - 28

24 tháng 12 2017

thì A=\(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|=1\) (bất đẳng thức về dâu giá trị tuyệt đối)

dấu = xảy ra <=> tích của chúng = nhau

a: Ta có: \(A=-x^2+4x+3\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi x=2

b: Ta có: \(B=-x^2+x\)

\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

13 tháng 2 2020

x = 6 nha bạn vì để có thể trừ cho 5 mà 7 lại trừ được số đó nên ta có 2 số 6 và 5 .

mà 5 - 5 = 0 nhưng trong phân số mẫu số không thể là 0 . vậy :

\(A=\frac{7-6}{6-5}\)\(\frac{1}{1}\)

13 tháng 2 2020

tớ đang định hỏi bài này nè