Tính giá trị biểu thức A) (a - 1)3 - 4a(a -1)(a+1) + 3(a - 1)(a2 + a +1) , vs a= - 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
a: \(A=2\left(m^3+n^3\right)-3\left(m^2+n^2\right)\)
\(=2\left[\left(m+n\right)^3-3mn\left(m+n\right)\right]-3\left[\left(m+n\right)^2-2mn\right]\)
\(=2-6mn-3+6mn\)
=-1
c: \(C=\left(a-1\right)^3-4a\left(a+1\right)\left(a-1\right)+3\left(a-1\right)\left(a^2+a+1\right)\)
\(=a^3-3a^2+3a-1-4a\left(a^2-1\right)+3a^3-3\)
\(=4a^3-3a^2+3a-4-4a^3+4a\)
\(=-3a^2+7a-4\)
\(=-3\cdot9-21-4\)
=-27-21-4
=-52
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
\(C=\left(a-1\right)^3-4a\left(a-1\right)\left(a+1\right)+3.\left(a-1\right)\left(a^2+a+1\right)\)
\(=a^3-1-3a.\left(a-1\right)-4a.\left(a^2-1\right)+3.\left(a^3-1\right)\)
\(=a^3-1-3a^2+3a-4a^3+4a+3a^3-3\)
\(=-3a^2+7a-4\)
Thay \(a=-3\) vào biểu thức ta có :
\(C=-3.\left(-3\right)^2+7.\left(-3\right)-4=-52\)
Câu 2:
f(3)=f(-3)
=>9a+3b+c=9a-3b+c
=>6b=0
hay b=0
=>f(x)=ax2+c
=>f(x)=f(-x)
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
a) Rút gọn M = -6ab(-2b + a). Tính được M = 60.
b) Rút gọn M = 6xy – 7. Tính được N = -10.
a snujh
a: \(=a^3-3a^2+3a-1-4a^3+4a+3a^3-3\)
\(=-3a^2+7a-4\)
\(=-3\cdot\left(-2\right)^2+7\cdot\left(-2\right)-4\)
\(=-12-14-4=-30\)