K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

 PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

BPQC là hình thang (dấu hiệu nhận biết hình thang)

b)Ta có :

Q là trung điểm PE

Q là trung điểm AC

 Q là trung điểm hai đường chéo của tứ giác AECP

Suy ra tứ giác AECP là hình bình hành 

14 tháng 9 2021

a) Ta có  :

P là trung điểm AB

Q là trung điểm AC

⇒ PQ là đường trung bình tam giác ABC

Xét tứ giác BPQC , ta có :

PQ//BC( do PQ là đường trung bình tam giác ABC)

⇒BPQC là hình thang (dấu hiệu nhận biết hình thang)

11 tháng 11 2021

a: Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC

Xét tứ giác BCDE có ED//BC

nên BCDE là hình thang

mà BD=CE

nên BCDE là hình thang cân

12 tháng 4 2020

a) Xét \(\Delta\)ABC ta có : 

M là trung điểm AB 

N là trung điểm AC 

=> MN là đường trung bình 

=> MN//BC , MN = 1/2 BC (1)

=> MNCB là hình thang 

b) Xét tam giác ABC ta có : 

N , P là trung điểm AC , BC (2)

=> NP là đường trung bình 

Từ (1) và (2) => MNPB là hình bình hành

15 tháng 4 2020

a) Xét \(\Delta\)ABC có: M; N là trung điểm của AB; AC 

=> MN là đường trung bình của \(\Delta\)ABC  (1)

=> MN//BC 

=> BCNM là hình thang 

b) (1) => MN //= \(\frac{1}{2}\) BC  mà BP = \(\frac{1}{2}\)BP  va B; P; C thẳng hàng  ( vì P là trung điểm BC ) 

=> MN// = BP => MNPB là hình bình hành 

c) MN // BC => MN // HP => MNHP là hình thang 

(b) => ^MNP = ^MBP => ^MNP = ^MBH (2) 

Lại có: ^NMH = ^MHB ( so le trong )  ( 3) 

Mặt khác: \(\Delta\)AHB vuông tại H có HM là trug tuyến đáy AB 

=> HM = \(\frac{1}{2}\)AB = BM 

=> \(\Delta\)MHB cân tại M => ^MBH = ^MHB  (4) 

Từ (2) ; (3) ; (4) => ^NMH = ^MNP 

=> MNPH là hình thang cân 

b) Điều kiện để HPNM là hình chữ nhật: 

Ta có: HPNM là hình thang cân

=> HPNM là hình chữ nhật  MH vuông góc BC 

Mặt khác ta có: AH vuông góc BC 

=> A; M; H thẳng hàng mà A; M; B thẳng hàng 

=> H trùng B 

=> Tam giác ABC vuong tại B.

15 tháng 4 2020

a) tam giác ABC có M ; N là trug điểm của AB ; AC

=) MN là trug bình của TG ABC (1)

=) MN/BC

=) BCNM là hình thag 

(mik chia ra nhé)

Bài 2. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và ACa) Tứ giác BMNC là hình gì? Tại sao ?b) Gọi E là điểm đối xứng của M qua N. CM tứ giác AECM là hình bình hành vàEC=BM.c) Tam giác ABC cần có thêm điều kiện gì để tứ giác AECM là :- Hình chữ nhật- Hình thoi- Hình vuôngBài 3. Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D quatrung điểm M của AC.a, Tứ giác ADCE là hình gì? Vì sao?b,...
Đọc tiếp

Bài 2. Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC
a) Tứ giác BMNC là hình gì? Tại sao ?
b) Gọi E là điểm đối xứng của M qua N. CM tứ giác AECM là hình bình hành và
EC=BM.
c) Tam giác ABC cần có thêm điều kiện gì để tứ giác AECM là :
- Hình chữ nhật
- Hình thoi
- Hình vuông
Bài 3. Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a, Tứ giác ADCE là hình gì? Vì sao?
b, Tứ giác ABDM là hình gì? Vì sao?
c, Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d, Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
Bài 4. Cho hình bình hành ABCD có AB = 2AD. Gọi E, F lần lượt là trung điểm của
CD. Gọi I là giao điểm của AF và DE, K là giao điểm của BF và CE.
Chứng minh rằng:
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AEFD là hình gì? Vì sao?
c) Chứng minh tứ giác EIFK là hình chữ nhật.
d) Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông

0
Bài 3:Cho tam giác ABC cân tại A.Gọi D,E,F lần lượt là trung điểm của AB,AC,BC.Gọi điểm I đối xứng với F qua E a.Chứng minh tứ giác BDEC là hình thang cân b.Chứng minh tứ giác AFCI là hình chữ nhật c.Tam giác cân ABC cần có thêm điều kiện gì để hình chữ nhật AFCI là hình vuông? Bài 4:Cho △ABC vuông tại A,trung tuyến AM.Gọi D là trung điểm của AB,E là điểm đối xứng với M qua D a.Chứng minh tứ giác AEBM là hình...
Đọc tiếp

Bài 3:Cho tam giác ABC cân tại A.Gọi D,E,F lần lượt là trung điểm của AB,AC,BC.Gọi điểm I đối xứng với F qua E

a.Chứng minh tứ giác BDEC là hình thang cân

b.Chứng minh tứ giác AFCI là hình chữ nhật

c.Tam giác cân ABC cần có thêm điều kiện gì để hình chữ nhật AFCI là hình vuông?

Bài 4:Cho △ABC vuông tại A,trung tuyến AM.Gọi D là trung điểm của AB,E là điểm đối xứng với M qua D

a.Chứng minh tứ giác AEBM là hình thoi

b.Chứng minh tứ giác AEMC là hình bình hành

c.Tinh diện tích của tam giác ABC biết AB=6cm,AC=4cm

Bài 5:Cho △ABC vuông tại A.Gọi D,E,F lần lượt là trung điểm của các cạnh AB,BC,AC.Gọi điểm K đối xứng với E qua AC

a.Các tứ giác ADEF và AKCE là hình gì?Vì sao?

b.Cho AB=4cm và AC=5cm.Tính diện tích tam giác ABC?

Bài 6:Cho △ABC vuông tại A.Gọi M,I,N lần lượt là trung điểm các cạnh AB,BC,AC.Lấy điểm E đối xứng với I qua M

a.Các tứ giác AMIN và AEBI là hình gì?Vì sao?

b.Cho AB=6cm,AC=8cm.Tính diện tích tứ giác AMIN?

HELP ME khocroikhocroikhocroi

0
22 tháng 11 2016

a) ta có góc DMA=MAN=DAN=900

=> tứ giác AMDN là hình chữ nhật

b) ta có DB=DC VÀ DN // MA ( do MDNA là hình chữ nhật )

=> DN là đường trung bình của tam giác ABC

--> AN=NC hay N là trung điểm của AC

c) ta có tứ giác ADCE có 2 đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành. Hình bình hành ADCE có 2 đường chéo vuông góc với nhau nên là hình thoi

d)

11 tháng 11 2017

a)Xét tứ giác AMDN ,có:

góc MAN=90(ΔABC vuông tại A)

góc AMD=90(DM⊥AB)

góc AND=90(DN⊥AC)

⇒Tứ giác AMDN là hình vuông

b)Xét △ABC vuông tại A,có:

AD là đường trung tuyến ứng vs cạnh huyền BC

⇒AD=1/2 BC hay AD=DC

Xét △ADC có:

AD=DC(cmt)

⇒△ADC là tam giác cân tại D

Xét △ADC cân tại D,có:

AN là đường cao (DN⊥AC)

⇒N là trung điểm AC

c)Xét tứ giác ADCE,có:

N là trung điểm DE

N là trung điểm AC

mà DE và AC là 2 đg chéo cắt nhau tại N

⇒tứ giác ADCE là hình bình hành

Xét hbh ADCE ,có:

ND⊥AC

⇒hbh ADCE là hình thoi

Xét hình chữ nhật AMDN ,có:

DN=AN hay DN=AN=NE=NC hay DE=AC

Xét hình thoi ADCE có :

DE=AC

mà DE và AC là 2 đg chéo

⇒ADCE là hình vuông

d)Giả sử tứ giác ABCE là hình thang cân

⇔góc B=góc C

⇔△ABC là tam giác vuông cân tại A

Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A

24 tháng 12 2018

a)Xét tứ giác AMDN ,có:

góc MAN=90(ΔABC vuông tại A)

góc AMD=90(DM⊥AB)

góc AND=90(DN⊥AC)

⇒Tứ giác AMDN là hình vuông

b)Xét △ABC vuông tại A,có:

AD là đường trung tuyến ứng vs cạnh huyền BC

⇒AD=1/2 BC hay AD=DC

Xét △ADC có:

AD=DC(cmt)

⇒△ADC là tam giác cân tại D

Xét △ADC cân tại D,có:

AN là đường cao (DN⊥AC)

⇒N là trung điểm AC

c)Xét tứ giác ADCE,có:

N là trung điểm DE

N là trung điểm AC

mà DE và AC là 2 đg chéo cắt nhau tại N

⇒tứ giác ADCE là hình bình hành

Xét hbh ADCE ,có:

ND⊥AC

⇒hbh ADCE là hình thoi

Xét hình chữ nhật AMDN ,có:

DN=AN hay DN=AN=NE=NC hay DE=AC

Xét hình thoi ADCE có :

DE=AC

mà DE và AC là 2 đg chéo

⇒ADCE là hình vuông

d)Giả sử tứ giác ABCE là hình thang cân

⇔góc B=góc C

⇔△ABC là tam giác vuông cân tại A

Vậy để tứ giác ABCE là hình thang cân thì △ABC là tam giác vông cân tại A