Cho \(\Delta ABC\) \(\left(\widehat{A}< 90\right)\), kẻ đường cao AH. Gọi D và E lần lượt là các điểm đối xứng với H qua AB và AC . Đoạn thẳng ED cắt AB và AC theo thứ tự ở M và N. C/minh:
\(a,AD=AE\)
b, HA là tia phân giác của góc MHN
c, CM // HD
a,Gọi giao điểm của HD,HE lần lượt là P,Q
Do D đối xứng H qua AB => PD = PH và DH ⊥ AP suy ra:ΔADH cân tại A
=> AD = AH (1)
Tương tự ta có:E đối xứng H qua AC => QH = QE và HE ⊥ AC suy ra: ΔAHE cân tại A=>AH=AE (2)
Từ (1) và (2) suy ra: AD=AE
b,Do AD=AE =>ΔADE cân tại A=> góc ADM=AEN (1)
ta có: QH=QE va HE ⊥AC =>tam giác HEN cân tại N=>góc NEQ =NHQ mà tam giác AHE cân tại A(cmt) =>góc AEN+NEQ=AHN+NHQ =>góc AEN=NHA (2)
Tg tự ta có: PD=PH và DH⊥AB =>ΔMDH cân tại M=>goc MDP=MHP mặt khác tam giác ADH cân tại A(cmt) =>góc ADM + MDP = AHM + MHP => góc ADM=MHA(3)
Từ (1), (2)và (3) =>góc NHA = MHA suy ra:HA là p/giác góc MHN