\(\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}=\frac{1}{x-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+........+\frac{1}{1280}\)
\(=\frac{1}{5}+\left(\frac{1}{5}-\frac{1}{10}\right)+\left(\frac{1}{10}-\frac{1}{20}\right)+.....+\left(\frac{1}{640}-\frac{1}{1280}\right)\)
\(=\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{20}+......+\frac{1}{640}-\frac{1}{1280}\)
\(=\frac{1}{5}+\frac{1}{5}-\frac{1}{1280}\)( Tối giản các phân số cho nhau )
\(=\frac{2}{5}-\frac{1}{1280}\)
\(=\frac{511}{1280}\)
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(=\left(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\right)\cdot5\cdot\frac{1}{5}\)
\(=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(1+1-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\left(2-\frac{1}{256}\right)\cdot\frac{1}{5}\)
\(=\frac{511}{256}\cdot\frac{1}{5}\)
\(=\frac{511}{1280}\)
mình cho bạn đó bạn đồng ý nhận lời mời kết bạn từ mình nha!!!!
A = 1/5 + 1/10 + 1/20 + 1/40 + ..... + 1/1280
A x 2 = 2/5 - ( 1 /5 + 1/10 + 1/20 + 1/40 + ... + 1/1280 ) - 1/1280
A x 2 = 2/5 - A - 1/1280
A x 2 - A = 2/5 - 1/1280
A = 2/5 - 1/1280
A = 511/1280
A = 1/5 + 1/10 + 1/20 + 1/40 + ..... + 1/1280
A x 2 = 2/5 - ( 1 /5 + 1/10 + 1/20 + 1/40 + ... + 1/1280 ) - 1/1280
A x 2 = 2/5 - A - 1/1280
A x 2 - A = 2/5 - 1/1280
A = 2/5 - 1/1280
A = 511/1280
Gọi tổng trên là A
Ta có : \(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+...+\frac{1}{2560}\)
\(2A=2\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{2560}\right)\)
\(2A=\frac{2}{5}+\frac{1}{5}+\frac{1}{10}+...+\frac{1}{1280}\)
\(2A-A=\left(\frac{2}{5}+\frac{1}{5}+...+\frac{1}{1280}\right)-\left(\frac{1}{5}+\frac{1}{10}+...+\frac{1}{2560}\right)\)
\(A\left(2-1\right)=\frac{2}{5}-\frac{1}{2560}\)
\(A.1=\frac{1024}{2560}-\frac{1}{2560}\)
\(A=\frac{1023}{2560}\)
Ta có : A = 1/5 + 1/10 + 1/20 + ... + 1/2560
2A = 2 ( 1/5 + 1/10 + ... + 1/2560 )
2A = 2/5 + 1/5 + 1/10 + .. + 1/2560
2A - A = ( 2/5 + 1/5 + ... + 1/1280 ) - ( 1/5 + 1/10 + ... + 1/2560 )
A = 2 - 1 = 2/5 - 1/2560
A.1 = 1024/2560 - 1/2560
A = 1023 = 2560
\(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{15}+.....+\frac{1}{1280}\)
\(A=\frac{1}{5}+\frac{1}{5\times2}+\frac{1}{5\times2\times2}+.....+\frac{1}{5\times2\times2\times2\times2\times2\times2\times2\times2}\)
\(A=\frac{1}{5}\times\left(1+\frac{1}{2}+\frac{1}{2\times2}+.....+\frac{1}{2\times2\times2\times2\times2\times2\times2\times2}\right)\)
\(5\times A=1+\frac{1}{2}+\frac{1}{2\times2}+.....+\frac{1}{2\times2\times2\times2\times2\times2\times2\times2}\)
\(10\times A=2+1+\frac{1}{2}+.....+\frac{1}{2\times2\times2\times2\times2\times2\times2}\)
Lấy hiệu :
\(10\times A-5\times A=2-\frac{1}{2\times2\times2\times2\times2\times2\times2\times2}\)
\(10\times A-5\times A=2-\frac{1}{256}\)
\(5\times A=\frac{2\times256-1}{256}\)
\(5\times A=\frac{511}{256}\)
\(A=\frac{511}{256}\div2\)
\(A=\frac{511}{1280}\)
Đặt : \(A=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+.....+\frac{1}{1280}\)
\(5A=1+\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+.....+\frac{1}{640}\)
\(5A-A=1-\frac{1}{1280}\)
\(4A=\frac{1279}{1280}\)
\(A=\frac{1279}{1280}.\frac{1}{4}=\frac{1279}{320}\)
a: \(\Leftrightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)\cdot\left(x-1\right)+\dfrac{1}{10}x-x=-\dfrac{9}{10}\)
\(\Leftrightarrow\dfrac{9}{10}x-\dfrac{9}{10}-\dfrac{9}{10}x=-\dfrac{9}{10}\)
=>-9/10=-9/10(luôn đúng)
b: \(\Leftrightarrow\dfrac{195x+195+130x+195+117x+195+100x+195}{195}=\dfrac{22\cdot39+4\cdot65+6\cdot39+40\cdot5}{195}\)
=>347x+780=1552
=>347x=772
hay x=772/347
mink cần gấp
\(\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{128}=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10\cdot1}+\frac{1}{10\cdot2}+\frac{1}{10\cdot3}+\frac{1}{10\cdot4}+...+\frac{1}{10\cdot128}=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10}\cdot\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right)=\frac{1}{x-2}\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^6}\)
\(2A-A=2-\frac{1}{2^7}\)
Thay vào biểu thức ta có :
\(\frac{1}{10}\cdot\left(2-\frac{1}{2^7}\right)=\frac{1}{x-2}\)
\(\Leftrightarrow\frac{1}{10}\cdot\frac{255}{128}=\frac{1}{x-2}\Leftrightarrow\frac{51}{256}=\frac{1}{x-2}\)
\(\Leftrightarrow51x-102=256\)
\(51x=358\Rightarrow x=\frac{358}{51}\)
Vậy ..................................