Tìm Min của :
a.A=\(x^4+x^2+9\)
b.B=\((x-2)^2+|y-8|+17\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng Bđt Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=2^2=4\)
\(\Rightarrow2\left(a^2+b^2\right)\ge4\)
\(\Rightarrow A\ge2\)
Dấu = khi a=b=1
Vậy...
b,c tương tự nhé
a) Ta có: \(\left|3x-5\right|\ge0\forall x\)
\(\Leftrightarrow2\left|3x-5\right|\ge0\forall x\)
\(\Leftrightarrow2\left|3x-5\right|-3\ge-3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{3}\)
bài 1
a, \(A=\frac{1}{-x^2+2x-2}=\frac{1}{-\left(x^2-2x+1\right)-1}=\frac{1}{-\left(x-1\right)^2-1}\)
Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-1\le-1\Rightarrow A=\frac{1}{-\left(x-1\right)^2-1}\ge\frac{1}{-1}=-1\)
Dấu "=" xảy ra khi x=1
Vậy Amin=-1 khi x=1
b, \(B=\frac{2}{-4x^2+8x-5}=\frac{2}{-4\left(x^2-2x+1\right)-1}=\frac{2}{-4\left(x-1\right)^2-1}\ge\frac{2}{-1}=-2\)
Dấu "=" xảy ra khi x=1
Vậy Bmin=-2 khi x=1
bài 2:
a, \(A=\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\Rightarrow A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
dấu "=" xảy ra khi x=-1/2
Vậy Amax=6/5 khi x=-1/2
b, \(B=\frac{5}{3x^2+4x+15}=\frac{5}{3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{41}{3}}=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Dấu '=" xảy ra khi x=-2/3
Vậy Bmax=15/41 khi x=-2/3
\(A=x^2-x+3=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}+3=\left(x-2\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\left(\left(x-2\right)^2\ge0\right)\)
\(\Rightarrow Min\left(A\right)=\dfrac{11}{4}\)
\(B=x^2-4x+1=x^2-4x+4-4+1=\left(x-2\right)^2-3\ge-3\left(\left(x-2\right)^2\ge0\right)\)
\(\Rightarrow Min\left(B\right)=-3\)
Câu C bạn xem lại đề
\(D=3-4x-x^2=3+4-4-4x-x^2=7-\left(x^2+4x+4\right)=7-\left(x+2\right)^2\le7\left(-\left(x+2\right)^2\le0\right)\)
\(\Rightarrow Max\left(D\right)=7\)
\(A=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\in R\)
Vậy GTNN của A là 11/4 khi x=1/2
\(A=-2\left(x-\frac{5}{4}\right)^2-\frac{39}{8}\le-\frac{39}{8}\)
\(A_{max}=-\frac{39}{8}\) khi \(x=\frac{5}{4}\)
\(B=-\frac{1}{2}\left[2x^2+2y^2-2xy-4x-4y\right]\)
\(B=-\frac{1}{2}\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2-8\right]\)
\(B=-\frac{1}{2}\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]+4\le4\)
\(B_{max}=4\) khi \(x=y=2\)
Phần 1);2) dễ nha nên bạn tự thay vào tính nha nên mk làm phần 3)
C=(a.a+2.a.b+b.b)
C=(a2+2ab +b2)
C=(a.(a+2b)+b2)
Chúc bn học tốt
2.x.2.x.2.x.x=2^3.x^4
a.a+b.b+c.c.c.c=a^2+b^2+c^4=(a+b+c)^2+c^2
ung ho nha moi nguoi