K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

Ta có : \(\left(a+b\sqrt{3}\right)^2=a^2+2ab\sqrt{3}+3b^2\)

Gỉa sử số \(99999+11111\sqrt{3}\) có thể biểu diễn dưới dạng : \(\left(a+b\sqrt{3}\right)^2\) thì :

\(\left\{{}\begin{matrix}a^2+3b^2=99999\\2ab\sqrt{3}=11111\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a^2+3b^2=99999\\2ab=11111\circledast\end{matrix}\right.\)

Do : \(ab\in Z\Rightarrow2ab\ne11111\Leftrightarrow\circledast\) không thể xảy ra .

Vậy , ....

11 tháng 6 2019

Giả sử tồn tại \(A,B\inℤ\)để có đẳng thức \(99999+11111\sqrt{3}=\left(A+B\sqrt{3}\right)^2\)

Suy ra \(99999+11111\sqrt{3}=A^2+3B^2+2\sqrt{3}AB\)

\(\Leftrightarrow2\sqrt{3}AB-11111\sqrt{3}=99999-A^2-3B^2\)

\(\Leftrightarrow\sqrt{3}\left(2AB-11111\right)=99999-A^2-3B^2\)

\(\Leftrightarrow\sqrt{3}=\frac{99999-A^2-3B^2}{2AB-11111}\)

Dễ thấy Vế trái là một số vô tỉ; Vế phải là một số hữu tỉ => Vô lí

Vậy số \(99999+11111\sqrt{3}\)không thể biểu diễn dưới dạng \(\left(A+B\sqrt{3}\right)^2.\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

\(\begin{array}{l}{(3 + \sqrt 2 )^5} - {(3 - \sqrt 2 )^5}\\ = {3^5} + {5.3^4}.\sqrt 2  + {10.3^3}{\left( {\sqrt 2 } \right)^2} + {10.3^2}{\left( {\sqrt 2 } \right)^3} + 5.3{\left( {\sqrt 2 } \right)^4} + {\sqrt 2 ^5}\\ - \left[ {{3^5} - {{5.3}^4}.\sqrt 2  + {{10.3}^3}{{\left( {\sqrt 2 } \right)}^2} - {{10.3}^2}{{\left( {\sqrt 2 } \right)}^3} + 5.3{{\left( {\sqrt 2 } \right)}^4} - {{\sqrt 2 }^5}} \right]\\ = 2\left( {{{5.3}^4}.\sqrt 2  + {{10.3}^2}{{\left( {\sqrt 2 } \right)}^3} + {{\sqrt 2 }^5}} \right)\\ = 810\sqrt 2  + 360\sqrt 2  + 8\sqrt 2 \\ = 1178\sqrt 2 \end{array}\)

NV
26 tháng 3 2021

Ta sẽ chứng minh:

\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, bình phương 2 vế, BĐT tương đương:

\(a^2+x^2+b^2+y^2+2\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)

\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)

\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(VT=\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\)

\(VT\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\) (đpcm)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,\sqrt{2^3}=2^{\dfrac{3}{2}}\\ b,\sqrt[5]{\dfrac{1}{27}}=\sqrt[5]{3^{-3}}=3^{-\dfrac{3}{5}}\\ c,\left(\sqrt[5]{a}\right)^4=\sqrt[5]{a^4}=a^{\dfrac{4}{5}}\)

23 tháng 1 2019

1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:

\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)