K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\sin^2\alpha+\left(\frac{7}{5}-\sin\alpha\right)^2=1\)

\(\Rightarrow25\sin^2\alpha-35\sin\alpha+12=0\)

\(\Rightarrow\left(5\sin\alpha-4\right)\left(5\sin\alpha-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sin\alpha=\frac{4}{5}\\\sin\alpha=\frac{3}{5}\end{cases}}\)

Nếu \(\sin\alpha=\frac{4}{5}\)thì \(\cos\alpha=\frac{3}{5}\Rightarrow\tan\alpha=\frac{4}{3}\)

Nếu \(\sin\alpha=\frac{3}{5}\)thì \(\cos\alpha=\frac{4}{5}\Rightarrow\tan\alpha=\frac{3}{4}\)

Tk cho mk bạn nhá

26 tháng 7 2018

Mn trả lời nhanh nhanh giùm em với ạ. Em đang cần gấp...

28 tháng 7 2018

- Ta có: \(\sin\alpha+\cos\alpha=\frac{7}{5}\)  

        \(\Rightarrow\sin\alpha=\frac{7}{5}-\cos\alpha\)

- Theo tỉ số lượng giác của óc nhọn, ta có:

         \(\sin^2\alpha+\cos^2\alpha=1\)

\(\Leftrightarrow\left(\frac{7}{5}-\cos\alpha\right)^2+\cos^2\alpha=1\)

\(\Leftrightarrow\frac{49}{25}-\frac{14}{5}\cos\alpha+\cos^2\alpha+\cos^2\alpha=1\)

\(\Leftrightarrow50\cos^2\alpha-70\cos\alpha+48=0\)

\(\Leftrightarrow25\cos^2\alpha-35\cos\alpha+24=0\)

\(\Leftrightarrow\left(5\cos\alpha-4\right)\left(5\cos\alpha-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5\cos\alpha-4=0\\5\cos\alpha-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\cos\alpha=\frac{4}{5}\\\cos\alpha=\frac{3}{5}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\sin\alpha=\frac{7}{5}-\cos\alpha=\frac{7}{5}-\frac{4}{5}=\frac{3}{5}\\\sin\alpha=\frac{7}{5}-\cos\alpha=\frac{7}{5}-\frac{3}{5}=\frac{4}{5}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}\end{cases}}\)

Kết luận: Vậy..........

19 tháng 7 2015

( sin a + cos a )^2 = (7/5)^2 

=> sin^2 a + cos^2a + 2.sina . cos a =  49/25 

=> 1 + 2.sin a . cos a  = 49/25 

=> 2.sin a + cos a = 49/25 - 1 = 24 / 25 

 ( sin a - cos a )^2 = sin ^2 a + cos ^2a  - 2. sin  a . cos a = 1 - 24/25 = 1/25 

=> sin a - cos a = 1/5 (2)

TA có sina + cos a = 7/5 (1)

Từ (1) và (1) => 2 sina = 8/5 => sin a = 8/5 : 2 = 8/10 = 4/5 

=> cos a = sin a - 1/5 = 4/5 - 1/5 = 3/5 

 

tan a = \(\frac{sina}{cosa}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{5}\cdot\frac{5}{3}=\frac{4}{3}\)

19 tháng 7 2015

a=A          

a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

                  \(\frac{1}{3}\)\(\frac{\sin\alpha}{\cos\alpha}\)

                    \(\cos\alpha\)= 3 \(\sin\alpha\)

ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)\(\frac{4\sin\alpha}{2\sin\alpha}\)\(2\)

#mã mã#

18 tháng 7 2022

a) Ta có A=\dfrac{\tan \alpha+3 \dfrac{1}{\tan \alpha}}{\tan \alpha+\dfrac{1}{\tan \alpha}}=\dfrac{\tan ^{2} \alpha+3}{\tan ^{2} \alpha+1}=\dfrac{\dfrac{1}{\cos ^{2} \alpha}+2}{\dfrac{1}{\cos ^{2} \alpha}}=1+2 \cos ^{2} \alphaA=tanα+tanα1tanα+3tanα1=tan2α+1tan2α+3=cos2α1cos2α1+2=1+2cos2α Suy ra A=1+2 \cdot \dfrac{9}{16}=\dfrac{17}{8}A=1+2169=817.

b) B=\dfrac{\dfrac{\sin \alpha}{\cos ^{3} \alpha}-\dfrac{\cos \alpha}{\cos ^{3} \alpha}}{\dfrac{\sin ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{3 \cos ^{3} \alpha}{\cos ^{3} \alpha}+\dfrac{2 \sin \alpha}{\cos ^{3} \alpha}}=\dfrac{\tan \alpha\left(\tan ^{2} \alpha+1\right)-\left(\tan ^{2} \alpha+1\right)}{\tan ^{3} \alpha+3+2 \tan \alpha\left(\tan ^{2} \alpha+1\right)}B=cos3αsin3α+cos3α3cos3α+cos3α2sinαcos3αsinαcos3αcosα=tan3α+3+2tanα(tan2α+1)tanα(tan2α+1)(tan2α+1).

Suy ra B=\dfrac{\sqrt{2}(2+1)-(2+1)}{2 \sqrt{2}+3+2 \sqrt{2}(2+1)}=\dfrac{3(\sqrt{2}-1)}{3+8 \sqrt{2}}B=22+3+22(2+1)2(2+1)(2+1)=3+823(21).

NV
27 tháng 11 2019

Do \(90< a< 180\Rightarrow cosa< 0\Rightarrow tana< 0\Rightarrow\) đề bài sai do tana không thể bằng 3

Nhưng kệ cứ tính thì:

Chia cả tử và mẫu của A cho \(cos^3a\) và lưu ý \(\frac{1}{cos^2a}=1+tan^2a\)

\(A=\frac{tana.\frac{1}{cos^2a}+tan^2a+1}{tan^3a-tana-1}=\frac{tana\left(1+tan^2a\right)+tan^2a+1}{tan^3a-tana-1}\)

Tới đây thay số vào và bấm máy là xong

1 tháng 8 2018

a) Áp dụng tính chất của tỉ số lượng giác ta có:

+) Sin2α + Cos2α=1

hay \(\left(\dfrac{1}{3}\right)^2\)+Cos2α=1

\(\dfrac{1}{9}\)+Cos2α=1

Cos2α=\(\dfrac{8}{9}\)

⇒Cos α=\(\sqrt{\dfrac{8}{9}}\)=\(\dfrac{2\sqrt{2}}{3}\)

+) \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{\dfrac{1}{3}}{\dfrac{2\sqrt{2}}{3}}=\dfrac{\sqrt{2}}{4}\)

+)\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{\dfrac{2\sqrt{2}}{3}}{\dfrac{1}{3}}\)=\(2\sqrt{2}\)