Bài 1:
Chứng tỏ rằng:
a)Tổng của 3 STN liên tiếp là một số chia hết cho 3.
b)Tổng của 4 STN liên tiếp là một số không chia hêt cho 4.
Bài 2:
Chứng tỏ rằng số có dang aaa aaa bao giờ cũng chia hết cho 7.
Bài 3:
Chứng tỏ rằng:số có dạng abc abc bao giờ cũng chia hết cho 11.
Bài 4:
Chứng tỏ rằng lấy một số có 2 chữ số, cộng vơi số hồm hai chữ ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11.
Bài 1 :
a/ Gọi ba số tự nhiên liên tiếp là : \(a;\left(a+1\right);\left(a+2\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)=3.a+3⋮3\)
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b/ Gọi bốn số tự nhiên liên tiếp là : \(a;\left(a+1\right);\left(a+2\right);\left(a+3\right)\)
Ta có : \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=a+a+1+a+2+a+3\)
\(=4a+6\)không chia hết cho 4
Vậy tổng của bốn số tự nhiên liên tiếp không chia hết cho 4
Bài 2 :
Ta có : \(\overline{aaaaaa}=\overline{a}.111111=\overline{a}.7.31746\)
Vậy \(\overline{aaaaaa}\)bao giờ cũng chia hết cho 7
Bài 3 :
Ta có \(\overline{abcabc}=\overline{abc}.\left(1000+\overline{abc}\right)=\overline{abc}.\left(1000+1\right)=\overline{abc}.1001=\overline{abc}.7.11.13⋮11\)
Vậy : \(\overline{abcabc}\)bao giờ cũng chia hết cho 11