cho hàm số \(\left(M^2-4M+3\right).x^2+2x\) . Tìm M để đồ thị hàm số đi qua gốc tọa độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có TXĐ:D=R
⇒∀x∈D⇒−x∈D
Đồ thị hàm số đã cho nhận gốc tọa độ O làm tâm đối xứng khi và chỉ khi nó là hàm số lẻ
⇔f(−x)=−f(x),∀x∈R
\(\text{⇔(−x)^3−(m^2−9)(−x)^2+(m+3)(−x)+m−3}\)
\(\text{=-[x^3−(m^2−9)x^2+(m+3)x+m−3]}\)
\(=\text{⇔2(m^2−9)x^2−2(m−3)=0}\)
\(\Rightarrow\forall\inℝ\) ;
\(\hept{\begin{cases}m^2-9=0\\m-3=0\end{cases}}\)
\(\hept{\begin{cases}m=\pm3\\m=3\end{cases}}\)
\(\Rightarrow m=3\)
\(b,\text{PT giao Ox và Oy: }\\ y=0\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow A\left(\dfrac{3}{2};0\right)\Leftrightarrow OA=\dfrac{3}{2}\\ x=0\Leftrightarrow y=3\Leftrightarrow B\left(0;3\right)\Leftrightarrow OB=3\\ \Leftrightarrow S_{OAB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{3}{2}\cdot3=\dfrac{9}{4}\left(cm^2\right)\\ c,C_1:\text{Áp dụng Pytago: }AB=\sqrt{OA^2+OB^2}=\dfrac{3\sqrt{5}}{2}\left(cm\right)\\ C_2:AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=\sqrt{\left(\dfrac{3}{2}-0\right)^2+\left(0-3\right)^2}=\dfrac{3\sqrt{5}}{2}\left(cm\right)\)
Thay x=0 và y=0 vào (d), ta được:
0m+m-m=0
=>0m=0(luôn đúng)
a) Gọi y = (2m -0,5)x là (d1)
Vì (d1) đi qua điểm A(-2;5)
=> x = -2 và y = 5
Thay x = -2 và y = 5 vào:
y =(2m-0,5)x
5 = (2m-0,5) . (-2)
5 = -4m + 1
5 - 1 = -4m
4 = -4m
=> -1 = m
Công thức xác định hàm số trên là: y = [ 2 . ( -1 ) - 0,5 ] . ( - 2 ) = 5x
b) Vẽ đồ thị hàm số thì mình lập bảng giá trị thôi nhé, bạn tự vẽ đi tại mình không biết vẽ trên OLM :((
Bảng giá trị
x 0 -5
y = 5x 0 5
Vậy ta có tọa độ (0;0) và (-5;5)
Nói chung là bảng giá trị cho số nào nhỏ thôi để dễ vẽ ^^
c) Vẽ được đồ thị rồi bạn sẽ tìm như đề yêu cầu
d) Bạn thay vào đồ thị ở câu c nhé. Nếu cho kết quả 2 vế = nhau thì là thuộc.