K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:

a. Để hàm số nghịch biến trên R thì:

$a+2<0$

$\Leftrightarrow a< -2$

b.

Để $(d)$ đi qua $M(-1;-4)$ thì:

$y_M=(a+2)x_M-a+1$

$\Leftrightarrow -4=(a+2)(-1)-a+1$

$\Leftrightarrow a=\frac{3}{2}$

27 tháng 6 2020

Hoàng độ giao điểm của (d) và (d') là nghiệm phương trình

2x - 1 + 2m = -x - 2m 

<=> 3x = - 4m + 1 

Để  (d) cắt (d') tại điểm có hoành độ dương 

<=> -4m + 1 > 0 

<=> m < 1/4 

Vậy m < 1/4

17 tháng 5 2018

Hai đường thảng trên song song khi va chi khi

\(\hept{\begin{cases}m^2=1\\1#0\end{cases}}\)

<=>\(\hept{\begin{cases}\orbr{\begin{cases}m=1\\m=-1\end{cases}}\\1#0\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\end{cases}}\)m=1 hoặc m= -1

\(\hept{\begin{cases}\orbr{\begin{cases}m=1\\m=-1\end{cases}}\\1#0\end{cases}}\)

23 tháng 12 2018

Dăm ba cái bài này . Ui người ta nói nó dễ !!!

a  ) song song \(\Leftrightarrow\hept{\begin{cases}a=a^,\\b\ne b^,\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=\frac{1}{2}\\m\ne-\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}m=\frac{3}{2}\\m\ne-\frac{1}{2}\end{cases}}\)

b ) Vì ( 1 ) cắt trục hoành tại điểm A có hoành độ bằng 2 nên ta có : x = 2 ; y = 0 

=> điểm A( 2 ; 0 ) 

Thay A vào ( 1 ) ta được : 0 = ( m - 1 ) . 2 + m 

                                  <=> 0 = 2m - 2 +m 

                                  <=> 0 + 2 = 2m + m

                                  <=> 2       = 3m

                                  <=> m     = 2/3 

c ) 

Gọi \(B\left(x_B;y_B\right)\) là điểm tiếp xúc của ( O ) và ( 1 ) 

Ta có bán kính của ( O ) là \(\sqrt{2}\) nên \(x_B=0;y_B=\sqrt{2}\)

=> \(B\left(0;\sqrt{2}\right)\)

Thay B vào ( 1 ) ta được : \(\sqrt{2}=\left(m-1\right).0+m\)

                           \(\Rightarrow m=\sqrt{2}\)